Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells
详细信息    查看全文
  • 作者:Feifei Wang (1)
    Shurong Deng (1)
    Mingquan Ding (1) (2)
    Jian Sun (1) (3)
    Meijuan Wang (1)
    Huipeng Zhu (1)
    Yansha Han (1)
    Zedan Shen (1)
    Xiaoshu Jing (1)
    Fan Zhang (1)
    Yue Hu (1)
    Xin Shen (1)
    Shaoliang Chen (1)
  • 关键词:K+ flux ; NaCl ; PeTPK1 ; Populus euphratica ; Protoplast ; Tobacco BY ; 2 cells
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:112
  • 期:1
  • 页码:19-31
  • 全文大小:1128KB
  • 参考文献:1. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an / Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621-5626 CrossRef
    2. Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiol 139:417-24 CrossRef
    3. Brodelius P, Nilsson K (1983) Permeabilization of immobilized plant cells, resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol 17:275-80 CrossRef
    4. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676-83 CrossRef
    5. Cha-um S, Chuencharoen S, Mongkolsiriwatana C, Ashraf M, Kirdmanee C (2012) Screening sugarcane ( / Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tissue Organ Cult 110:23-3 CrossRef
    6. Chen SL, Polle A (2010) Salinity tolerance of / Populus. Plant Biol 12:317-33 CrossRef
    7. Chen SL, Li JK, Wang SS, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of / Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186-94 CrossRef
    8. Chen SL, Li JK, Fritz E, Wang SS, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217-30 CrossRef
    9. Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of / Populus euphratica and / Populus tomentosa. Can J For Res 33:967-75 CrossRef
    10. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230-246 CrossRef
    11. Chen ZY, Wu YJ, Di LJ, Wang GD, Shen YF (2012) The AtCCX1 transporter mediates salinity tolerance in both / Arabidopsis and yeast. Plant Cell Tissue Organ Cult 109:91-9 CrossRef
    12. Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol l46:1924-933 CrossRef
    13. Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657-61 CrossRef
    14. Czempinski K, Zimmermann S, Ehrhardt T, Müller-R?ber B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J l16:2565-575 CrossRef
    15. Dai SX, Chen SL, Fritz E, Olbrich A, Kettner C, Polle A, Hüttermann A (2006) Ion compartmentation in leaf cells of / Populus euphratica and / P. tomentosa under salt stress. J Beijing For Univ 28:1- (in Chinese with English abstract)
    16. Ding MQ, Hou PC, Shen X, Wang MJ, Deng SR, Sun J, Xiao F, Wang RG, Zhou XY, Lu CF, Zhang DQ, Zheng XJ, Hu ZM, Chen SL (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251-69 CrossRef
    17. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11-5
    18. Dreyer I, Porée F, Schneider A, Mittelst?dt J, Bertl A, Sentenac H, Thibaud JB, Roeber BM (2004) Assembly of plant shaker-like K+ out channels requires two distinct sites of the channel α-subunit. Biophys J 87:858-72 CrossRef
    19. Dubcovsky J, Luo MC, Zhong GY, Bransteiter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, / Triticum monococcum L., and its comparison with maps of / Hordeum vulgare L. Genetics 143:983-99
    20. Dunkel M, Latz A, Schumacher K, Müller T, Becker D, Hedrich R (2008) Targeting of vacuolar membrane localized members of the TPK channel family. Mol Plant 1:938-49 CrossRef
    21. Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar ( / Populus?×? / canescens). Planta 229:299-09 CrossRef
    22. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89-21 CrossRef
    23. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726-0731 CrossRef
    24. Goldstein SA, Price LA, Rosenthal DN, Pausch MH (1996) ORK1, a potassium-selective leak channel with two pore domains cloned from / Drosophila melanogaster by expression in / Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:13256-3261 CrossRef
    25. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175-84 CrossRef
    26. Gu RL, Fonseca S, Puskás LG, Hackler LJR, Zvara á, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of / Populus euphratica. Tree Physiol 24:265-76 CrossRef
    27. Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911-920 CrossRef
    28. Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152-155 CrossRef
    29. Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in K+ channel signature sequences. Biophys J 66:1061-067 CrossRef
    30. Isayenkov S, Isner JC, Maathuis FJM (2011) Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23:756-68 CrossRef
    31. Junghans U, Polle A, Düchting P, Weller E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519-531 CrossRef
    32. Karimi M, Inzé D, Depicker A (2002) Gateway vectors for / Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193-95 CrossRef
    33. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690-95 CrossRef
    34. Kochian LV, Lucas WJ (1988) Potassium transport in roots. Adv Bot Res 15:93-77 CrossRef
    35. Kochian LV, Shaff JE, Kühtreiber WM, Jaffe LF, Lucas WJ (1992) Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601-10 CrossRef
    36. Kühtreiber WM, Jaffe LF (1990) Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565-573 CrossRef
    37. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105-32 CrossRef
    38. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996a) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004-011
    39. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996b) A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem 271:4183-187 CrossRef
    40. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot (Lond) 84:123-33 CrossRef
    41. Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158-68 CrossRef
    42. Ma?trejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A (2011) Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. Plant Physiol 156:1783-796 CrossRef
    43. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego
    44. Mazea D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. J Cell Biol 66:198-00 CrossRef
    45. Mills D, Robinson K, Hodges TK (1985) Sodium and potassium fluxes and compartmentation in roots of / Atriplex and oat. Plant Physiol 92:23-8
    46. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651-81 CrossRef
    47. Nocarova E, Fischer L (2009) Cloning of transgenic tobacco BY-2 cells: an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol 9(44):1-1
    48. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978-985 CrossRef
    49. Ottow EA, Polle A, Brosché M, Kangasj?rvi J, Dibrov P, Z?rb C, Teichmann T (2005a) Molecular characterization of / PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:73-6 CrossRef
    50. Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasj?rvi J, Jiang XN, Polle A (2005b) / Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762-772 CrossRef
    51. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339-46 CrossRef
    52. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660-663 CrossRef
    53. Sch?nknecht G, Spoormaker P, Steinmeyer R, Brüggeman L, Ache P, Dutta R, Reintanz B, Godde M, Hedrich R, Palme K (2002) KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett 511:28-2 CrossRef
    54. Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441-71 CrossRef
    55. Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399-04 CrossRef
    56. Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825-37 CrossRef
    57. Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. Springer, Berlin
    58. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from / Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653-665 CrossRef
    59. Sun J, Dai SX, Wang RG, Chen SL, Li NY, Zhou XY, Lu CF, Shen X, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009a) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29:1175-186 CrossRef
    60. Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009b) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141-153 CrossRef
    61. Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010a) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205-15 CrossRef
    62. Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010b) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed / Populus euphratica cells. Plant Cell Environ 33:943-58 CrossRef
    63. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan B, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasj?rvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé CJ, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi P, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, / Populus trichocarpa (Torr. & Gray). Science 313:1596-604 CrossRef
    64. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Ann Rev Plant Biol 54:575-03 CrossRef
    65. Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A sec14p-nodulin domain phosphaidylinositol transfer protein polarizes membrane growth of / Arabidopsis thaliana root hairs. J Cell Biol 168:801-12 CrossRef
    66. Voelker C, Gomez-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czempinski K, Dreyer I (2010) Roles of tandem-pore K+ channel in plants—a puzzle still need to be solved. Plant Biol 12:56-3 CrossRef
    67. Volkov V, Amtmann A (2006) / Thellungiella halophila, a salt-tolerant relative of / Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342-53 CrossRef
    68. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) / Thellungiella halophila, a salt-tolerant relative of / Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1-4 CrossRef
    69. Wang RG, Chen SL, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581-91 CrossRef
    70. Wang RG, Chen SL, Zhou XY, Shen X, Deng L, Zhu HJ, Shao J, Shi Y, Dai SX, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947-57 CrossRef
    71. Wei Q, Hu P, Kuai BK (2012) Ectopic expression of an / Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in / Arabidopsis. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-012-0157-2
    72. Xu Y, Sun T, Yin LP (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48:823-31 CrossRef
    73. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441-45 CrossRef
    74. Zonia L, Cordeiro S, TupyJ FeijòJA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3, 4, 5, 6-tetrakisphosphate. Plant Cell 14:2233-249 CrossRef
  • 作者单位:Feifei Wang (1)
    Shurong Deng (1)
    Mingquan Ding (1) (2)
    Jian Sun (1) (3)
    Meijuan Wang (1)
    Huipeng Zhu (1)
    Yansha Han (1)
    Zedan Shen (1)
    Xiaoshu Jing (1)
    Fan Zhang (1)
    Yue Hu (1)
    Xin Shen (1)
    Shaoliang Chen (1)

    1. College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing, 100083, People’s Republic of China
    2. College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, Zhejiang Province, People’s Republic of China
    3. College of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People’s Republic of China
  • ISSN:1573-5044
文摘
Populus euphratica is a plant model intensively studied for elucidating physiological and molecular mechanisms of salt tolerance in woody species. Several studies have shown that vacuolar potassium (K+) ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Here, we cloned a putative TPK channel gene from P. euphratica, termed PeTPK. Sequence analysis of PeTPK1 identified the universal K-channel-specific pore signature, TXGYGD. Over-expression of PeTPK1 in tobacco BY-2 cells improved salt tolerance, but did not enhance tolerance to hyperosmotic stress caused by mannitol (200-00?mM). After 3?weeks of NaCl stress (100 and 150?mM), PeTPK1-transgenic cells had higher fresh and dry weights than wild-type cells. Salt treatment caused significantly higher Na+ accumulation and K+ loss in wild-type cells compared to transgenic cells. During short-term salt stress (100?mM NaCl, 24-h), PeTPK1-transgenic cells showed higher cell viability and reduced membrane permeabilization compared to wild-type cells. Scanning ion-selective electrode data revealed that salt-shock elicited a significantly higher transient K+ efflux from PeTPK1-transgenic callus cells and protoplasts compared to that observed in wild-type cells and protoplasts. We concluded that salt tolerance in P. euphratica is most likely mediated through PeTPK1. We propose that, under salt stress, PeTPK1 functions as an outward-rectifying, K+ efflux channel in the vacuole that transfers K+ to the cytosol to maintain K+ homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700