Functional redundancy of the two 5-hydroxylases in monolignol biosynthesis of Populus trichocarpa: LC–MS/MS based protein quantification and metabolic flux analysis
详细信息    查看全文
  • 作者:Jack P. Wang (1)
    Christopher M. Shuford (3)
    Quanzi Li (1)
    Jina Song (2)
    Ying-Chung Lin (1)
    Ying-Hsuan Sun (1)
    Hsi-Chuan Chen (1)
    Cranos M. Williams (2)
    David C. Muddiman (3)
    Ronald R. Sederoff (1)
    Vincent L. Chiang (1)
  • 关键词:Lignin ; Syringyl lignin ; Angiosperm ; Kinetics ; Subcellular localization
  • 刊名:Planta
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:236
  • 期:3
  • 页码:795-808
  • 全文大小:654KB
  • 参考文献:1. Barnidge DR, Goodmanson MK, Klee GG, Muddiman DC (2004) Absolute quantification of the model biomarker prostate-specific antigen in serum by LC–MS/MS using protein cleavage and isotope dilution mass spectrometry. J Proteome Res 3:644-52 CrossRef
    2. Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ (1996) Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A–I. Clin Chem 42:1676-682
    3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519-46 CrossRef
    4. Brown SA (1961) Chemistry of lignification: biochemical research on lignins is yielding clues to the structure and formation of these complex polymers. Science 134:305-13 CrossRef
    5. Brown SA, Neish AC (1955a) Studies of lignin biosynthesis using isotopic carbon. IV. Formation from some aromatic monomers. Can J Biochem Physiol 33:948-62 CrossRef
    6. Brown SA, Neish AC (1955b) Shikimic acid as a precursor in lignin biosynthesis. Nature 175:688-89 CrossRef
    7. Brown SA, Neish AC (1956) Studies of lignin biosynthesis using isotopic carbon. V. Comparative studies on different plant species. Can J Biochem Physiol 34:769-78 CrossRef
    8. Brown SA, Neish AC (1959) Studies of lignin biosynthesis by use of isotopic carbon. VIII. Isolation of radioactive hydrogenolysis products of lignin. J Am Chem Soc 81:2419-424 CrossRef
    9. Chen HC, Shuford CM, Liu J, Muddiman DC, Sederoff RR, Chiang VL (2011) Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc Natl Acad Sci 108:21253-1258 CrossRef
    10. Dass C, Kusmierz JJ, Desiderio DM (1991) Mass spectrometric quantification of endogenous beta-endorphin. Biol Mass Spectrom 20:130-38 CrossRef
    11. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by Tandem MS. P Natl Acad Sci USA 100:6940-945
    12. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG. Method Nat Protocol 2:31-4 CrossRef
    13. Grand C (1984) Ferulic acid 5-hydroxylase: a new cytochrome P-450-dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett 169:7-1 CrossRef
    14. Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, New York, pp 131-33 CrossRef
    15. Higuchi T, Brown SA (1963a) Studies of lignin biosynthesis using isotopic carbon. XII. The biosynthesis and metabolism of spinapic acid. Can J Biochem Physiol 41:613-20 CrossRef
    16. Higuchi T, Brown SA (1963b) Studies of lignin biosynthesis using isotopic carbon: XIII. The phenylpropanoid system in lignification. Biochem Cell Biol 41:621-28 CrossRef
    17. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci 96:10045-0050 CrossRef
    18. Jiang H, Morgan JA (2004) Optimization of an in vivo plant P450 monooxygenase system in / Saccharomyces cerevisiae. Biotechnol Bioeng 85:130-37 CrossRef
    19. Kushnir MM, Rockwood AL, Nelson GJ, Yue BF, Urry FM (2005) Assessing analytical specificity in quantitative analysis using tandem mass spectrometry. Clin Biochem 38:319-27 CrossRef
    20. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:14
    21. Maclean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, Maccoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966-68 CrossRef
    22. Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci 96:8955-960 CrossRef
    23. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133(3):1051-071 CrossRef
    24. Ralph J (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29-0 CrossRef
    25. Ralph J, Brunow G, Boerjan W (2007) Lignins. In: Encyclopedia of life sciences. Wiley, Chichester
    26. Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco ( / Nicotiana tabacum). Arch Biochem Biophys 393:222-35 CrossRef
    27. Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17-0 CrossRef
    28. Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley, New York
    29. Sauvage FL, Gaulier JM, Lachatre G, Marquet P (2008) Pitfalls and prevention strategies for liquid chromatography-tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54:1519-527 CrossRef
    30. Scopes RK (1974) Measurement of protein by spectrophotometry at 205?nm. Anal Biochem 59:277-82 CrossRef
    31. Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2009) Towards a systems approach for lignin biosynthesis in / Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144-63 CrossRef
    32. Shuford CM, Li Q, Sun YH, Chen HC, Wang JP, Shi R, Sederoff RR, Chiang VL, Muddiman DC (2012) Comprehensive quantification of monolignol-pathway enzymes in / Populus trichocarpa by protein cleavage isotope dilution mass spectrometry (submitted)
    33. Tuskan GA et al (2006) The genome of black cottonwood, / Populus trichocarpa (Torr. & Gray). Science 313:1596-604 CrossRef
    34. Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related / Arabidopsis thaliana ADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272:19176-9186 CrossRef
    35. Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001-003
    36. Wright D, Brown SA, Neish AC (1958) Studies of lignin biosynthesis using isotopic carbon. VI. Formation of the side chain of the phenylpropane monomer. Can J Biochem Physiol 36:1037-045 CrossRef
    37. Yoo SD, Cho YH, Sheen J (2007) / Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protocol 2:1565-572 CrossRef
  • 作者单位:Jack P. Wang (1)
    Christopher M. Shuford (3)
    Quanzi Li (1)
    Jina Song (2)
    Ying-Chung Lin (1)
    Ying-Hsuan Sun (1)
    Hsi-Chuan Chen (1)
    Cranos M. Williams (2)
    David C. Muddiman (3)
    Ronald R. Sederoff (1)
    Vincent L. Chiang (1)

    1. Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
    3. W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
    2. Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
文摘
Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis–Menten and inhibition kinetics with LC–MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis–Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700