Limitation of adsorptive penetration of cesium into Prussian blue crystallite
详细信息    查看全文
  • 作者:Hirotaka Fujita ; Risa Miyajima ; Akiyoshi Sakoda
  • 关键词:Adsorptive penetration ; Prussian blue ; Cesium
  • 刊名:Adsorption
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:21
  • 期:3
  • 页码:195-204
  • 全文大小:943 KB
  • 参考文献:1. Bleuzen, A, Cafun, JD, Bachschmidt, A, Verdaguer, M, Münsch, P, Baudelet, F, Itié, JT (2008) Co Fe Prussian blue analogues under variable pressure. evidence of departure from cubic symmetry: X-ray diffraction and absorption study. J. Phys. Chem. C 112: pp. 17709-17715 CrossRef
    2. Buser, HJ, Schwarzenbach, D, Petter, W, Ludi, A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 16: pp. 2704-2710 CrossRef
    3. Cafun, JD, Champion, G, Arrio, MA, Moulin, CC, Bleuzen, A (2010) Photomagnetic CoFe Prussian blue analogues: role of the cyanide ions as active electron transfer bridges modulated by cyanide-alkali metal ion interactions. J. Am. Chem. Soc. 132: pp. 11552-11559 CrossRef
    4. Fujita, H, Sasano, H, Miyajima, R, Sakoda, A (2014) Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6] 4 ? Adsorption 20: pp. 905-915 CrossRef
    5. Gotoh, A, Uchida, H, Ishizaki, M, Satoh, T, Kaga, S, Okamoto, S, Ohta, M, Sakamoto, M, Kawamoto, T, Tanaka, H, Tokumoto, H, Hara, S, Shiozaki, H, Yamada, M, Miyake, M, Kurihara, M (2007) Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 18: pp. 345609-345615 CrossRef
    6. Her, JH, Stephens, PW, Kareis, CM, Moore, JG, Min, KS, Park, JW, Bali, G, Kennon, BS, Miller, JS (2010) Anomalous non-Prussian blue structures and magnetic ordering of K2Mn(II)[Mn(II)(CN)6] and Rb2Mn(II)[Mn(II)(CN)6]. Inorg. Chem. 15 49: pp. 1524-1534 CrossRef
    7. Herren, F, Fischer, P, Ludi, A, Haelg, W (1980) Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 19: pp. 956-959 CrossRef
    8. Hu, M, Jiang, JS, Ji, RP, Zeng, Y (2009) Prussian Blue mesocrystals prepared by a facile hydrothermal method. Cryst. Eng. Comm 11: pp. 2257-2259 CrossRef
    9. Hu, M, Torad, NL, Chiang, YD, Wu, KC, Yamauchi, Y (2012) Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst. Eng. Commun. 14: pp. 3387-3396 CrossRef
    10. Hu, M, Furukawa, S, Ohtani, R, Sukegawa, H, Nemoto, Y, Reboul, J, Kitagawa, S, Yamauchi, Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew. Chem. Int. Ed. 51: pp. 984-988 CrossRef
    11. Hu, M, Torad, NL, Yamauchi, Y (2012) Preparation of various Prussian blue analogue hollow nanocubes with single crystalline shells. Eur. J. Inorg. Chem. 2012: pp. 4795-4799 CrossRef
    12. Ishizaki, M, Akiba, S, Ohtani, A, Hoshi, Y, Ono, K, Matsuba, M, Togashi, T, Kananizuka, K, Skamoto, M, Takahashi, A, Kawamoto, T, Tanaka, H, Watanabe, M, Arisaka, M, Nankawad, T, Kurihara, M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans. 42: pp. 16049-16055 CrossRef
    13. Itaya, K, Uchida, I, Vernon, DN (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19: pp. 162-168 CrossRef
    14. Ito, A, Suenaga, M, Ono, K (1968) M?ssbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J. Chem. Phys. 48: pp. 3597-3599
文摘
The adsorption of cesium (Cs) onto Prussian blue (PB) with different crystallite sizes is investigated to examine the limitations of the adsorptive penetration of Cs+ into PB crystallite. The adsorption of Cs+ onto soluble PB occurs via ion exchange with a charge-compensation cation like K+, which originally resides in the crystalline lattice. The ratio of the compensation cation sites that are replaced by Cs+ after adsorption time of 2?weeks significantly increases with decreasing crystallite size, meaning that the adsorption occurs only near the surface of the crystallite during the adsorption time. The depth of Cs+ penetration after 2?weeks is only within approximately 1-?nm (or 1- units of the crystalline lattice) from the external surface of the crystallite at ambient temperature, regardless of the crystallite size. Hence, the crystallite size is the most important factor governing the adsorption performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700