Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by Pseudomonas sp. CF600 and Changes in Its Fatty Acid Composition
详细信息    查看全文
  • 作者:Agnieszka Nowak ; Agnieszka Mrozik
  • 关键词:Pseudomonas sp. CF600 ; Monochlorophenols ; Co ; metabolism ; Dioxygenases ; Fatty acids
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:227
  • 期:3
  • 全文大小:1,612 KB
  • 参考文献:Arora, P. K., & Bae, H. (2014). Bacterial degradation of chlorophenols and their derivatives. Microbial Cell Factories, 13, 31.CrossRef
    Baggi, G., Andreoni, V., Bernasconi, S., Cavalca, L., & Zangrossi, M. (2002). Co-metabolic degradation of mixtures of monochlorophenols by phenol-degrading microorganisms. Annals of Microbiology, 52, 133–143.
    Bhatkal, A., Punage, S., & Deshannavar, U. B. (2012). Biodegradation of 4-chlorophenol by Pseudomonas putida NCIM sp. 2650 under aerobic conditions. Research Journal of Environmental Sciences, 6, 238–244.CrossRef
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRef
    Bugg, T. D. H., & Ramaswamy, S. (2008). Non-heme iron-dependent dioxygenases: unraveling catalytic mechanisms for complex enzymatic oxidation. Current Opinion in Chemical Biology, 12, 134–140.CrossRef
    Chang, Y. Y., & Cronan, J. E. (1999). Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Molecular Microbiology, 33, 249–259.CrossRef
    Chrzanowski, Ł., Owsianiak, M., Szulc, A., Marecik, R., Piotrowska-Cyplik, A., Olejnik-Schmidt, A. K., Staniewski, J., Lisiecki, P., Ciesielczyk, F., Jesionowski, T., & Heipieper, H. J. (2011). Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. International Biodeterioration & Biodegradation, 65, 605–611.CrossRef
    Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322, 21–39.CrossRef
    Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., & Madeira, V. M. C. (1997). Effects of a lipophilic environmental pollutant (DDT) on the phospholipid and fatty acid contents of Bacillus stearothermophilus. Archives of Environmental Contamination and Toxicology, 33, 341–349.CrossRef
    Escuder-Gilabert, L., Martin-Biosca, Y., Sagrado, S., Villanueva-Camañas, R. M., & Medina-Hernández, M. J. (2001). Biopartitioning micellar chromatography to predict ecotoxicity. Analytica Chimica Acta, 448, 173–185.CrossRef
    Fakhruddin, A. N. M., & Hossain, M. (2007). Degradation of monochlorophenols by Psudomonas putida CP1 in the presence of growth supplements. Bangladesh Journal of Microbiology, 24, 115–118.
    Ge, F., Zhu, L., & Chen, H. (2006). Effect of pH on the chlorination process of phenols in drinking water. Journal of Hazardous Materials B, 133, 99–105.CrossRef
    Greń, I., Wojcieszyńska, D., Guzik, U., Perkosz, M., & Hupert-Kocurek, K. (2010). Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World Journal of Microbiology and Biotechnology, 26, 289–295.CrossRef
    Guzik, U., Greń, I., Wojcieszyńska, D., & Łabużek, S. (2009). Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Brazilian Journal of Microbiology, 40, 285–291.
    Guzik, U., Hupert-Kocurek, K., & Wojcieszyńska, D. (2013). Intradiol dioxygenases—the key enzymes in xenobiotics degradation. In R. Chamy & F. Rosenkrand (Eds.), Biodegradation of hazardous and special products. Rijeka, Croatia: InTech.
    Haddock, J. D. (2010). Aerobic degradation of aromatic hydrocarbons: enzyme structures and catalytic mechanisms. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer-Verlag.
    Hegeman, G. D. (1966). Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. Journal of Bacteriology, 91, 1140–1154.
    Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.CrossRef
    Hou, C. T., Lillard, M. O., & Schwartz, R. D. (1976). Protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus. Biochemistry, 15, 582–588.CrossRef
    Kaczorek, E., Sałek, K., Guzik, U., Jesionowski, T., & Cybulski, Z. (2013). Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. Chemosphere, 90, 471–478.CrossRef
    Kim, M. H., & Hao, O. J. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research, 33, 562–574.CrossRef
    Lee, C. Y., & Lee, Y. P. (2007). Degradation of 4-chlorophenol by enriched mixed cultures utilizing phenol and glucose as added growth substrate. World Journal of Microbiology and Biotechnology, 23, 383–391.CrossRef
    Menke, B., & Rehm, H. J. (1992). Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Applied and Environmental Microbiology, 37, 655–661.
    Michałowicz, J., & Duda, W. (2007). Phenols transformations in the environment and living organisms. Current Topics in Biophysics, 30, 24–36.
    Mrozik, A., Piotrowska-Seget, Z., & Łabużek, S. (2004). Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiological Research, 159, 87–95.CrossRef
    Mrozik, A., Łabużek, S., & Piotrowska-Seget, Z. (2005). Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiological Research, 160, 149–157.CrossRef
    Mrozik, A., Piotrowska-Seget, Z., & Łabużek, S. (2007). FAME profiles in Pseudomonas vesicularis during catechol and phenol degradation in the presence of glucose as an additional carbon source. Polish Journal of Microbiology, 56, 157–164.
    Muñoz-Rojas, J., Bernal, P., Duque, E., Godoy, P., Segura, A., & Ramos, J. L. (2006). Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Applied and Environmental Microbiology, 72, 472–477.CrossRef
    Peng, X., Misawa, N., & Harayama, S. (2003). Isolation and characterization of thermophilic Bacilli degrading cinnamic, 4-coumaric and ferulic acids. Applied and Environmental Microbiology, 69, 1417–1427.CrossRef
    Piotrowska-Seget, Z., & Mrozik, A. (2003). Signature lipid biomarker (SLB) analysis in determining changes in community structure of soil microorganisms. Polish Journal of Environmental Studies, 12, 669–675.
    Powlowski, J., & Shingler, V. (1994). Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 5, 219–236.CrossRef
    Roy, M., Chakrabarti, S. K., Bharadwaj, N. K., Chandra, S., Kumar, S., Singh, S., Bajpai, P. K., & Jauhari, M. B. (2004). Characterization of chlorinated organic material in Eucalyptus pulp bleaching effluents. Journal of Scientific & Industrial Research, 63, 527–535.
    Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark: Microbial ID. Inc.
    Segura, A., Bernal, P., Pini, C., Krell, T., Daniels, C., & Ramos, J. L. (2010). Membrane composition and modifications in response to aromatic hydrocarbons in gram-negative bacteria. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer-Verlag.
    Tarighian, A., Hill, G., Headley, J., & Pedras, S. (2003). Enhancement of 4-chlorophenol biodegradation using glucose. Clean Technologies and Environmental Policy, 5, 61–65.
    Veenagayathri, K., & Vasudevan, N. (2013). Degradation of 4-chlorophenol by a moderately halophilic bacterial consortium under saline conditions. British Microbiology Research Journal, 3, 513–524.CrossRef
    Wang, S. J., & Loh, K. C. (2000). New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water Research, 34, 3786–3794.CrossRef
    Wang, S. J., & Loh, K. C. (2001). Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Biodegradation, 12, 189–199.CrossRef
    WHO. (2000). Concise international chemical assessment document 26. Benzoic acid and sodium benzoate.
    Wojcieszyńska, D., Guzik, U., Greń, I., Perkosz, M., & Hupert-Kocurek, K. (2011). Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World Journal of Microbiology and Biotechnology, 27, 805–811.CrossRef
    Wu, H. S., Shen, S. H., Han, J. M., Liu, Y. D., & Liu, S. D. (2009). The effect in vitro of exogenously applied p-hydroxybenzoic acid on Fusarium oxysporum f. sp. niveum. Phytopathologia Mediterranea, 48, 439–446.
  • 作者单位:Agnieszka Nowak (1)
    Agnieszka Mrozik (1)

    1. Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
In this study, co-metabolic degradation of monochlorophenols (2-CP, 3-CP, and 4-CP) by the Pseudomonas sp. CF600 strain in the presence of phenol, sodium benzoate, and 4-hydroxybenzoic acid as an additional carbon source as well as the survival of bacteria were investigated. Moreover, the changes in cellular fatty acid profiles of bacteria depending on co-metabolic conditions were analyzed. It was found that bacteria were capable of degrading 4-CP completely in the presence of phenol, and in the presence of all substrates, they degraded 2-CP and 3-CP partially. The highest 2-CP and 3-CP removal was observed in the presence of sodium benzoate. Bacteria exhibited three various dioxygenases depending on the type of growth substrate. It was also demonstrated that bacteria exposed to aromatic growth substrates earlier degraded monochlorophenols more effectively than unexposed cells. The analysis of fatty acid profiles of bacteria indicated the essential changes in their composition, involving alterations in fatty acid saturation, hydroxylation, and cyclopropane ring formation. The most significant change in bacteria exposed to sodium benzoate and degrading monochlophenols was the appearance of branched fatty acids. The knowledge from this study indicates that Pseudomonas sp. CF600 could be a suitable candidate for the bioaugmentation of environments contaminated with phenolic compounds. Keywords Pseudomonas sp. CF600 Monochlorophenols Co-metabolism Dioxygenases Fatty acids

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700