Electrooxidation of acetaldehyde on carbon-supported Pt, PtRu and Pt3Sn and unsupported PtRu0.2 catalysts: A quantitative DEMS study
详细信息    查看全文
文摘
The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700