Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts
详细信息    查看全文
  • 作者:José J. Linares (1) (2)
    Sabrina C. Zignani (1)
    Thairo A. Rocha (1)
    Ernesto R. Gonzalez (1)
  • 关键词:PEMFC ; Ethanol ; Oxidation products ; High temperature ; Polybenzimidazole ; Catalysts
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:43
  • 期:2
  • 页码:147-158
  • 全文大小:785KB
  • 参考文献:1. Lamy C, Countanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, 1st edn. Wiley, Weinheim, p 22
    2. Snyder K (2009) New catalyst paves the path for ethanol-powered fuel cells. Brookhaven National Laboratory News. http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=898. Accessed 25 July 2012
    3. Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell. A real-time mass spectrometry study. J Electrochem Soc 142:4218-224 CrossRef
    4. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123 CrossRef
    5. Lobato J, Ca?izares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-( / m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351-62 CrossRef
    6. Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications fuel cells, electrolyzers, and energy conversion. J Electrochem Soc 159(7):F194–F202 CrossRef
    7. Qingfeng L, Hjuler HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications. J Appl Electrochem 31:773-79 CrossRef
    8. Lobato J, Ca?izares P, Rodrigo MA, Linares JJ (2009) Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9:597-04 CrossRef
    9. Zhou Q, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273-85 CrossRef
    10. Tsiakaras PE (2007) PtM/C (M?=?Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: structural characteristics and cell performance. J Power Sources 171:107-12 CrossRef
    11. Linares JJ, Rocha TA, Zignani S, Paganin VA, Gonzalez ER (2012) Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.06.113
    12. Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kountou S, Tsiakaras P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131:217-23 CrossRef
    13. Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energ 37:4597-6050 CrossRef
    14. Ribeiro J, Dos Anjos DM, Léger J-M, Hahn F, Olivi P, De Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653-62 CrossRef
    15. Song S, He C, Liu J, Wang Y, Brouzgou A, Tsiakaras P (2012) Two-step sequence for synthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediate products. Appl Catal B Environ 30:227-33 CrossRef
    16. Tripkovi? AV, Lovi? JD, Popovi? KDJ (2010) Comparative study of ethanol oxidation at Pt-based nanoalloys and UPD-modified Pt nanoparticles. J Serb Chem Soc 75:1559-574 CrossRef
    17. Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Comm 9:398-04 CrossRef
    18. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1-2 CrossRef
    19. Parreira LS, Rascio DC, Silva JCM, De Souza RFB, D’Villa-Silva M, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2012) A Pt3Sn/C electrocatalyst used as the cathode and anode in a single direct ethanol fuel cell. Int J Chem 4:38-8
    20. Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118-125 CrossRef
    21. Sun S, Chojak Halseid M, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190:2-3 CrossRef
    22. Lobato J, Ca?izares P, Rodrigo MA, Linares JJ (2009) Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl Catal B Environ 91:269-74 CrossRef
    23. Lobato J, Ca?izares P, Ubeda D, Pinar FJ, Rodrigo MA (2011) Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl Catal B Environ 106:174-80
    24. Parrondo J, Santhanam R, Mijangos F, Rambabu B (2010) Electrocatalytic performance of In2O3-supported Pt/C nanoparticles for ethanol electro-oxidation in direct ethanol fuel cells. Int J Electrochem Sci 5:1342-354
    25. Uda T, Boysen DA, Chisholm CRI, Haile SM (2006) Alcohol fuel cells at optimal temperatures batteries, fuel cells, and energy conversion. Electrochem Solid State Lett 9:A261–A264 CrossRef
    26. Otomo J, Nishida S, Takahashi H, Nagamoto H (2008) Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature. J Electroanal Chem 615:84-0 CrossRef
    27. Otomo J, Nishida S, Kato H, Nagamoto H, Oshima Y (2008) Direct alcohol electro-oxidation in an intermediate temperature fuel cell. ECS Trans 16:1275-284 CrossRef
    28. Shimada I, Oshima Y, Otomo J (2011) Acceleration of ethanol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. J Electrochem Soc 158:B368–B375 CrossRef
    29. Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255-65 CrossRef
    30. Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T (2012) Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C. J Power Sources 199:103-09 CrossRef
    31. Wang Q, Sun GQ, Cao L, Jiang LH, Wang GX, Wang SL, Yang SH, Xin Q (2008) High performance direct ethanol fuel cell with double-layered anode catalyst layer. J Power Sources 177:142-47 CrossRef
    32. Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18-4 CrossRef
    33. Andreadis G, Stergiopoulos V, Song S, Tsiakaras P (2010) Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution. Appl Catal B Environ 100:157-64 CrossRef
    34. Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal Today 160:28-8 CrossRef
    35. Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54:1511-518 CrossRef
    36. Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98-03 CrossRef
    37. Sun S, Heinen M, Jusys Z, Behm RJ (2012) Electrooxidation of acetaldehyde on a carbon supported Pt catalyst at elevated temperature/pressure: an on-line differential electrochemical mass spectrometry study. J Power Sources 204:1-3 CrossRef
    38. Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ (2007) Ethanol electrooxidation on novel carbon supported Pt/SnO / x /C catalysts with varied Pt:Sn ratio. Electrochim Acta 53:377-89 CrossRef
    39. Chiou JYZ, Siang J-Y, Yang S-Y, Ho K-F, Lee C-L (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.02.081
    40. Panagiotopoulou P, Verykios XE (2012) Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. Int J Hydrogen Energ. doi:10.1016/j.ijhydene.2012.02.087
    41. Lamy C, Lima X, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283-96 CrossRef
    42. Zhao A, Ying W, Zhang H, Ma H, Fang D (2012) Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal Comm 17:34-8 CrossRef
    43. Galleti C, Specchia S, Saracco G, Specchia V (2010) CO-selective methanation over Ru–γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chem Eng Sci 65:590-96 CrossRef
    44. Bao CL, Tsong TT (1988) Methanation on Ir surfaces at low gas pressure and temperature: a study by pulsed-laser field desorption time-of-flight mass spectroscopy. Surf Sci 201:371-84 CrossRef
    45. Powell JB, Langer SH (1985) Low-temperature methanation and Fischer–Tropsch activity over supported ruthenium, nickel, and cobalt catalysts. J Catal 94:566-69 CrossRef
    46. Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. J Catal 278:181-88 CrossRef
    47. Bittins-Cattaneo B, Wilhelm S, Cattaneo E, Buschmann HW, Vielstich W (1988) Intermediates and products of ethanol oxidation on platinum in acid solution. Phys Chem Chem Phys 92:1210-218
    48. Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531-37 CrossRef
    49. Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108:19413-9424 CrossRef
    50. Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim Acta 53:2963-971 CrossRef
    51. Colmati F, Gonzalez E (2007) Electronic effects in Pt-Sn alloy as anode in direct ethanol fuel cell. ECS Trans 11:1425-435 CrossRef
    52. Xu Z-F, Wang Y (2011) Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: adsorption and dehydrogenation on Pt3M (M?=?Pt, Ru, Sn, Re, Rh, and Pd). J Phys Chem C 115:20565-0571 CrossRef
    53. Camargo APM, Previdello BAF, Varela H, Gonzalez ER (2010) Effect of temperature on the electro-oxidation of ethanol on platinum. Quim Nova 33:2143-147 CrossRef
    54. Ghumman A, Vink C, Yepez O, Pickup PG (2008) Continuous monitoring of CO2 yields from electrochemical oxidation of ethanol: catalyst, current density and temperature effects. J Power Sources 177:71-6 CrossRef
    55. Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40:111-21 CrossRef
    56. Rao V, Cremers C, Stimming U, Cao L, Sun S, Yan S, Sun G, Xin Q (2007) Electro-oxidation of ethanol at gas diffusion electrodes A DEMS study. J Electrochem Soc 154:B1138–B1147 CrossRef
    57. Polychronopoulou K, Kalamaras CM, Efstathiou AM (2011) Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water-gas shift reactions. Recent Pat Mat Sci 4:1-4
  • 作者单位:José J. Linares (1) (2)
    Sabrina C. Zignani (1)
    Thairo A. Rocha (1)
    Ernesto R. Gonzalez (1)

    1. Instituto de Química de S?oCarlos, USP, Av. Trabalhador S?o Carlense, 400, CP 780, S?o Carlos, SP, CEP 13560-970, Brazil
    2. Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro CP 04478, Brasília, DF, CEP 70910-000, Brazil
  • ISSN:1572-8838
文摘
A high temperature ethanol-fed polymer electrolyte membrane fuel cell has been implemented by using H3PO4-doped m-polybenzimidazole as polymeric electrolyte. Commercial Pt/C, PtRu/C and Pt3Sn/C catalysts are used in the anode. The performance was assessed in terms of polarization curves at different temperatures, feeding the cell with a high concentration ethanol solution (water/ethanol mass ratio of 2). The product distribution was measured with the support of a gas chromatograph. The use of bimetallic catalysts increased the current density. PtRu/C showed the best performance up to 175?°C, but it is outperformed by Pt3Sn/C at 200?°C. In terms of oxidation products, higher temperatures and current densities favour the oxidation of ethanol. However, Pt3Sn/C promoted the generation of more oxidized products compared to PtRu/C (in which most of the ethanol is oxidized to acetaldehyde), especially at high temperature. This accounts for the large current density. In terms of complete oxidation of ethanol to CO2, Pt/C was by far the most efficient catalyst for C–C scission, achieving percentages of 56?% of CO2, although operating above 175?°C dramatically boosted an undesirable methanation process that slashed the efficiency. The combination of fuel cell results and product distribution helped to suggest the different oxidation routes on the surface of the different catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700