Ball convergence theorems for eighth-order variants of Newton’s method under weak conditions
详细信息    查看全文
  • 作者:Ioannis K. Argyros ; Santhosh George
  • 关键词:65D10 ; 65D99
  • 刊名:Arabian Journal of Mathematics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:4
  • 期:2
  • 页码:81-90
  • 全文大小:644 KB
  • 参考文献:1.Amat S., Hernández M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164-74 (2008)View Article MATH MathSciNet
    2.Amat S., Busquier S., Plaza S.: Dynamics of the King’s and Jarratt iterations. Aequationes. Math. 69, 212-13 (2005)View Article MATH MathSciNet
    3.Argyros I.K.: Convergence and Application of Newton-type Iterations. Springer, Berlin (2008)
    4.Argyros, I.K.; Hilout, Said.: Computational Methods in Nonlinear Analysis.World Scientific Publ. Co., New Jersey (2013)
    5.ArgyrosI Q., Chen D., Quian Q.: The Jarratt method in Banach space setting. J. Comput. Appl. Math. 51, 103-06 (1994)View Article MathSciNet
    6.Candela V., Marquina A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169-84 (1990)View Article MATH MathSciNet
    7.Chen J.: Some new iterative methods with three-order convergence. Appl. Math. Comput. 181, 1519-522 (2006)View Article MATH MathSciNet
    8.Chun C., Neta B., Scott M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567-92 (2014)View Article MathSciNet
    9.Cordero A., Torregrosa J.: Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686-98 (2007)View Article MATH MathSciNet
    10.Cordero A., Maimo J., Torregrosa J., Vassileva M.P., Vindel P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842-48 (2013)View Article MATH MathSciNet
    11.Cordero, A.; Magrenan, A.; Quemada, C.; Torregrosa, J.R.: Stability study of eight-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. (to appear)
    12.Ezquerro J.A., Hernández M.A.: A uniparametric Halley-type iteration with free second derivative. Int. J. Pure Appl. Math. 6(1), 99-10 (2003)MathSciNet
    13.Ezquerro J.A., Hernández M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325-42 (2009)View Article MATH
    14.Frontini M., Sormani E.: Some variants of Newton’s method with third order convergence. Appl. Math. Comput. 140, 419-26 (2003)View Article MATH MathSciNet
    15.Gutiérrez J.M., Hernández M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1- (1998)View Article MATH MathSciNet
    16.Hernández M.A., Salanova M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29-0 (1999)MATH
    17.Kanwar M.V., Kukreja V.K., Singh S.: On some third-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 171, 272-80 (2005)View Article MATH MathSciNet
    18.Kou J., Li Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189, 1816-821 (2007)View Article MATH MathSciNet
    19.Parhi S.K., Gupta D.K.: Semilocal convergence of a Stirling-like method in Banach spaces. Int. J. Comput. Methods 7(02), 215-28 (2010)View Article MathSciNet
    20.Petkovic M.S., Neta B., Petkovic L., D?uni? J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)MATH
    21.Potra F.A., Ptak V.: Nondiscrete induction and iterative processes. Research Notes in Mathematics, vol. 103. Pitman Publ., Boston (1984)
    22.Rall L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger, New York (1979)MATH
    23.Ren H., Wu Q., Bi W.: New variants of Jarratt method with sixth-order convergence. Numer. Algorithms 52(4), 585-03 (2009)View Article MATH MathSciNet
    24.Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. In: Tikhonov, A.N.; et?al. (eds.) Mathematical models and numerical methods, pub. 3, (19), pp. 129-42. Banach Center, Warsaw (1975)
    25.Traub J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)MATH
    26.Weerakoon S., Fernando T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87-3 (2000)View Article MATH MathSciNet
    27.Wang X., Kou J.: Convergence for modified Halley-like methods with less computation of inversion. J. Differ. Equ. Appl. 19(9), 1483-500 (2013)View Article MATH MathSciNet
  • 作者单位:Ioannis K. Argyros (1)
    Santhosh George (2)

    1. Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA
    2. Department of Mathematical and Computational Sciences, NIT Karnataka, Mangalore, 575 025, India
  • 刊物主题:Mathematics, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2193-5351
文摘
We present a local convergence analysis for eighth-order variants of Newton’s method in order to approximate a solution of a nonlinear equation. We use hypotheses up to the first derivative in contrast to earlier studies such as Amat et?al. (Appl Math Comput 206(1):164-74, 2008), Amat et?al. (Aequationes Math 69:212-13, 2005), Chun et?al. (Appl Math Comput. 227:567-92, 2014), Petkovic et?al. (Multipoint methods for solving nonlinear equations. Elsevier, Amsterdam, 2013), Potra and Ptak (Nondiscrete induction and iterative processes. Pitman Publ, Boston, 1984), Rall (Computational solution of nonlinear operator equations. Robert E. Krieger, New York, 1979), Ren et?al. (Numer Algorithms 52(4):585-03, 2009), Rheinboldt (An adaptive continuation process for solving systems of nonlinear equations. Banach Center, Warsaw, 1975), Traub (Iterative methods for the solution of equations. Prentice Hall, Englewood Cliffs, 1964), Weerakoon and Fernando (Appl Math Lett 13:87-3, 2000), Wang and Kou (J Differ Equ Appl 19(9):1483-500, 2013) using hypotheses up to the seventh derivative. This way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700