Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system
详细信息    查看全文
  • 作者:Zsolt Wagner (1)
    Tamás Tábi (1)
    Tamás Jakó (1)
    Gergely Zachar (2)
    András Csillag (2)
    éva Sz?k? (1) eva.szoko@net.sote.hu
  • 关键词:Chiral capillary electrophoresis – Neurotransmitter amino acids – d ; Aspartate – NBD ; F – Dual cyclodextrin system
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:404
  • 期:8
  • 页码:2363-2368
  • 全文大小:178.4 KB
  • 参考文献:1. D’Aniello A, Guiditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057
    2. D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234
    3. D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D'Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027
    4. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179
    5. Kirschner DL, Green TK (2009) Separation and sensitive detection of d-amino acids in biological matrices. J Sep Sci 32(13):2305–2318
    6. Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3078–3095
    7. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653(1):1–22
    8. Lapainis T, Sweedler JV (2008) Contributions of capillary electrophoresis to neuroscience. J Chromatogr A 1184(1–2):144–158
    9. Kirschner DL, Jaramillo M, Green TK (2007) Enantioseparation and stacking of cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated beta-cyclodextrin. Anal Chem 79(2):736–743
    10. Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-aspartate. Anal Chem 77(22):7190–7194
    11. Thorsen G, Bergquist J (2000) Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection. J Chromatogr B: Biomed Sci Appl 745(2):389–397
    12. Wang S, Fan L, Cui S (2009) CE-LIF chiral separation of aspartic acid and glutamic acid enantiomers using human serum albumin and sodium cholate as dual selectors. J Sep Sci 32(18):3184–3190
    13. Wagner Z, Tábi T, Zachar G, Csillag A, Sz?k? E (2011) Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate. Electrophoresis 32(20):2816–2822
    14. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic, Amsterdam
    15. Tábi T, Lohinai Z, Pálfi M, Levine M, Sz?k? E (2008) CE-LIF determination of salivary cadaverine and lysine concentration ratio as an indicator of lysine decarboxylase enzyme activity. Anal Bioanal Chem 391(2):647–651
    16. US-FDA (2001) Guidance for industry—bioanalytical method validation.
    17. Sz?k? E, Tábi T (2010) Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J Pharm Biomed Anal 53(5):1180–1192
    18. Scriba GK (2008) Cyclodextrins in capillary electrophoresis enantioseparations—recent developments and applications. J Sep Sci 31(11):1991–2011
    19. Huang Y, Shi M, Zhao S (2009) Quantification of d-Asp and d-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis. J Sep Sci 32(17):3001–3006
    20. Samakashvili S, Ibanez C, Simo C, Gil-Bea FJ, Winblad B, Cedazo-Minguez A, Cifuentes A (2011) Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 32(19):2757–2764
    21. Simo C, Barbas C, Cifuentes A (2002) Sensitive micellar electrokinetic chromatography-laser-induced fluorescence method to analyze chiral amino acids in orange juices. J Agric Food Chem 50(19):5288–5293
    22. Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM (2006) Assay of trace d-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 78(23):8121–8128
    23. Fillet M, Bechet I, Hubert P, Crommen J (1996) Resolution improvement by use of carboxymethyl-beta-cyclodextrin as chiral additive for the enantiomeric separation of basic drugs by capillary electrophoresis. J Pharm Biomed Anal 14(8–10):1107–1114
    24. Lelievre F, Gareil P, Jardy A (1997) Selectivity in capillary electrophoresis: application to chiral separations with cyclodextrins. Anal Chem 69(3):385–392
    25. Lurie IS, Klein RF, Dal Cason TA, LeBelle MJ, Brenneisen R, Weinberger RE (1994) Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrins. Anal Chem 66(22):4019–4026
    26. Rudaz S, Geiser L, Souverain S, Prat J, Veuthey JL (2005) Rapid stereoselective separations of amphetamine derivatives with highly sulfated gamma-cyclodextrin. Electrophoresis 26(20):3910–3920
    27. Galaverna G, Corradini R, Dossena A, Marchelli R, Vecchio G (1997) Histamine-modified beta-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis. Electrophoresis 18(6):905–911
    28. Ivanyi R, Jicsinszky L, Juvancz Z, Roos N, Otta K, Szejtli J (2004) Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-beta-cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis 25(16):2675–2686
    29. Guttman A, Cooke N (1994) Practical aspects of chiral separations of pharmaceuticals by capillary electrophoresis I. Separation optimization. J Chromatogr A 680(1):157–162
    30. Rawjee YY, Williams RL, Vigh G (1994) Efficiency optimization in capillary electrophoretic chiral separations using dynamic mobility matching. Anal Chem 66(21):3777–3781
    31. Chen F, Zhang S, Qi L, Chen Y (2006) Chiral capillary electrophoretic separation of amino acids derivatized with 9-fluorenylmethylchloroformate using mixed chiral selectors of beta-cyclodextrin and sodium taurodeoxycholate. Electrophoresis 27(14):2896–2904
    32. Jin LJ, Rodriguez I, Li SF (1999) Enantiomeric separation of amino acids derivatized with fluoresceine isothiocyanate isomer I by micellar electrokinetic chromatography using beta- and gamma-cyclodextrins as chiral selectors. Electrophoresis 20(7):1538–1545
    33. Fillet M, Chankvetadze B, Crommen J, Blaschke G (1999) Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis. Electrophoresis 20(13):2691–2697
    34. Fillet M, Hubert P, Crommen J (1997) Enantioseparation of nonsteroidal anti-inflammatory drugs by capillary electrophoresis using mixtures of anionic and uncharged beta-cyclodextrins as chiral additives. Electrophoresis 18(6):1013–1018
    35. Jakubetz H, Juza M, Schurig V (1998) Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis II. Enhancement of enantioselectivity. Electrophoresis 19(5):738–744
    36. Lelievre F, Gareil P, Bahaddi Y, Galons H (1997) Intrinsic selectivity in capillary electrophoresis for chiral separations with dual cyclodextrin systems. Anal Chem 69(3):393–401
    37. Abushoffa AM, Fillet M, Hubert P, Crommen J (2002) Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems. J Chromatogr A 948(1–2):321–329
    38. Tábi T, Magyar K, Sz?k? E (2003) Chiral characterization of deprenyl-N-oxide and other deprenyl metabolites by capillary electrophoresis using a dual cyclodextrin system in rat urine. Electrophoresis 24(15):2665–2673
    39. Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121
  • 作者单位:1. Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary2. Department of Anatomy, Histology and Embryology, Semmelweis University, T?zoltó u. 58, 1094 Budapest, Hungary
  • ISSN:1618-2650
文摘
Chiral capillary electrophoresis method has been developed to separate aspartate and glutamate enantiomers to investigate the putative neuromodulator function of d-Asp in the central nervous system. To achieve appropriate detection sensitivity fluorescent derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and laser-induced fluorescence detection was applied. Although, simultaneous baseline separation of the two enantiomer pairs could be achieved by using 3 mM 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin (HPA-β-CD), further improvement of the chemical selectivity was required because of the high excess of l-enantiomers in real samples to be analyzed. The system selectivity was fine-tuned by combination of 8 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin and 5 mM HPA-β-CD in order to increase the resolution between aspartate and glutamate enantiomers. The method was validated for biological application. The limits of detection for d-Asp and d-Glu were 17 and 9 nM, respectively, while the limit of quantification for both analytes was 50 nM. This is the lowest quantification limit reported so far for NBD-tagged d-Asp and d-Glu obtained by validated capillary electrophoresis laser-induced fluorescence method. The applicability of the method was demonstrated by analyzing brain samples of 1-day-old chickens. In all the studied brain areas, the d-enantiomer contributed 1–2 % of the total aspartate content, corresponding to 17–45 nmol/g wet tissue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700