Study on the interaction of three structurally related cationic Pt(II) complexes with human serum albumin: importance of binding affinity and denaturing properties
详细信息    查看全文
  • 作者:Reza Yousefi ; Mehrnaz Jamshidi…
  • 关键词:Cationic Pt(II) complexes ; Human serum albumin ; Anticancer activity ; Fluorescence ; Circular dichroism
  • 刊名:Journal of the Iranian Chemical Society
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:4
  • 页码:617-630
  • 全文大小:3,660 KB
  • 参考文献:1.P.J. O’Dwyer, J.P. Stevenson, S.W. Johnson, Clinical pharmacokinetics and administration of established platinum drugs. Drugs 59(Suppl 4), 19–27 (2000)CrossRef
    2.M. Decatris, S. Sundar, K. O’byrne, Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev. 30(1), 53–81 (2004)CrossRef
    3.E. Wong, C.M. Giandomenico, Current status of platinum-based antitumor drugs. Chem. Rev. 99(9), 2451–2466 (1999)CrossRef
    4.B.P. Espósito, R. Najjar, Interactions of antitumoral platinum-group metallodrugs with albumin. Coord. Chem. Rev. 232(13), 137–149 (2002)CrossRef
    5.R. Safirstein, J. Winston, M. Goldstein, D. Moel, S. Dikman, J. Guttenplan, Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8(5), 356–367 (1986)CrossRef
    6.X. Wang, Z. Guo, The role of sulfur in platinum anticancer chemotherapy. Anticancer Agents Med. Chem. 7(1), 19–34 (2007)CrossRef
    7.O. Vrana, V. Brabec, l -Methionine inhibits reaction of DNA with anticancer cis-diamminedichloroplatinum (II). Biochemistry 41(36), 10994–10999 (2002)CrossRef
    8.V. Marchán, V. Moreno, E. Pedroso, A. Grandas, Towards a better understanding of the cisplatin mode of action. Chemistry 7(4), 808–815 (2001)CrossRef
    9.V. Marchán, E. Pedroso, A. Grandas, Insights into the reaction of transplatin with DNA and proteins: methionine mediated formation of histidine–guanine trans-Pt (NH3) 2 cross-links. Chemistry 10(21), 5369–5375 (2004)CrossRef
    10.S.S. van Boom, B.W. Chen, J.M. Teuben, J. Reedijk, Platinum-thioether bonds can be reverted by guanine-N7 bonds in Pt (dien) 2+ model adducts. Inorg. Chem. 38(7), 1450–1455 (1999)CrossRef
    11.D.C. Carter, J.X. Ho, Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)CrossRef
    12.T. Peters, Serum albumin. Adv. Protein Chem. 37, 161–245 (1985)CrossRef
    13.P.A. Zunszain, J. Ghuman, T. Komatsu, E. Tsuchida, S. Curry, Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 7(3), 6 (2003)CrossRef
    14.K. Yamasaki, T. Maruyama, U. Kragh-Hansen, M. Otagiri, Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim. Biophys. Acta 1295(2), 147–157 (1996)CrossRef
    15.U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33(1), 17–53 (1981)
    16.Y.-Z. Zhang, H.-R. Li, J. Dai, W.-J. Chen, J. Zhang, Y. Liu, Spectroscopic studies on the binding of cobalt (II) 1, 10-phenanthroline complex to bovine serum albumin. Biol. Trace Elem. Res. 135(1–3), 136–152 (2010)CrossRef
    17.B. Zhou, Z.D. Qi, Q. Xiao, J.-X. Dong, Y.Z. Zhang, Y. Liu, Interaction of loratadine with serum albumins studied by fluorescence quenching method. J. Biochem. Biophys. Methods 70(5), 743–747 (2007)CrossRef
    18.A. Sułkowska, Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 614(6), 227–232 (2002)CrossRef
    19.A.R. Timerbaev, C.G. Hartinger, S.S. Aleksenko, B.K. Keppler, Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem. Rev. 106(6), 2224–2248 (2006)CrossRef
    20.F. Yang, C. Bian, L. Zhu, G. Zhao, Z. Huang, M. Huang, Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J. Struct. Biol. 157(2), 348–355 (2007)CrossRef
    21.M. Jamshidi, R. Yousefi, S.M. Nabavizadeh, M. Rashidi, M.G. Haghighi, A. Niazi, A.-A. Moosavi-Movahedi, Anticancer activity and DNA-binding properties of novel cationic Pt(II) complexes. Int. J. Biol. Macromol. 66, 86–96 (2014)CrossRef
    22.S. Krimm, J. Bandekar, Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986)CrossRef
    23.M. Golbon-Haghighi, M. Rashidi, S.M. Nabavizadeh, M. Kubicki, Selectivity in metal-carbon bond protonolysis in p-tolyl- (or methyl)-cycloplatinated(II) complexes: kinetics and mechanism of the uncatalyzed isomerization of the resulting Pt(II) products. Dalton Trans. 42(37), 13369–13380 (2013)CrossRef
    24.P. Bourassa, S. Dubeau, G.M. Maharvi, A.H. Fauq, T. Thomas, H. Tajmir-Riahi, Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin. Biochimie 93(7), 1089–1101 (2011)CrossRef
    25.E.P. Melo, M.R. Aires-Barros, S.M.B. Costa, J.M.S. Cabral, Thermal unfolding of proteins at high pH range studied by UV absorbance. J. Biochem. Biophys. Methods 34(1), 45–59 (1997)CrossRef
    26.F.A. Beckford, Reaction of the anticancer organometallic ruthenium compound. Int. J. Inorg. Chem. 2010(975756), 1–7 (2010)CrossRef
    27.G.-F. Zhu, Y. Wang, L. Xi, J. Liu, H. Wang, Du L-f, Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin. J. Lumin. 159, 188–196 (2015)CrossRef
    28.G. Zhang, Y. Ma, Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chem. 136(2), 442–449 (2013)CrossRef
    29.L. Daojin, Z. Jingfeng, J. Jing, Y. Xiaojun, Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J. Mol. Struct. 846(1–3), 34–41 (2007)
    30.G. Zhang, N. Zhao, L. Wang, Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. J. Lumin. 131, 2716–2724 (2011)CrossRef
    31.J. Yang, C. Wu, H. Martinez, Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53(6), 778–782 (1981)CrossRef
    32.P. Manavalan, W.C. Johnson Jr, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167(1), 76–85 (1987)CrossRef
    33.R. Hyperchem, 7.0 for windows, molecular modeling system (HyperCube, Inc and Autodesk, Inc, 2002)
    34.F. Keshavarz, M.M. Alavianmehr, R. Yousefi, Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin. Mol. Biol. Res. Commun. 1(2), 65–73 (2012)
    35.R. Thomsen, M.H. Christensen, MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49(11), 3315–3321 (2006)CrossRef
    36.D. Leis, S. Barbosa, D. Attwood, P. Taboada, V. Mosquera, Physicochemical study of the complexation of nortriptyline and human serum albumin. Langmuir 18(21), 8178–8185 (2002)CrossRef
    37.C. Mugnaini, S. Pasquini, F. Corelli, The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem. 16(14), 1746–1767 (2009)CrossRef
    38.A. Ahmed, M. Daneshtalab, Polycyclic quinolones (part 1) thieno [2, 3-b] benzo [h] quinoline derivatives: design, synthesis, preliminary in vitro and in silico studies. Heterocycles 85(1), 103–122 (2012)CrossRef
    39.G. Jaouen, S. Top, A. Vessieres, G. Leclercq, M.J. McGlinchey, The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr. Med. Chem. 11(18), 2505–2517 (2004)CrossRef
    40.Y.J. Hu, Y. Liu, Z.B. Pi, S.S. Qu, Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Bioorg. Med. Chem. 13(24), 6609–6614 (2005)CrossRef
    41.S. Bi, D. Song, Y. Tian, X. Zhou, Z. Liu, H. Zhang, Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(4), 629–636 (2005)CrossRef
    42.J. Ghuman, P.A. Zunszain, I. Petitpas, A.A. Bhattacharya, M. Otagiri, S. Curry, Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 353(1), 38–52 (2005)CrossRef
    43.Z.-D. Qi, B. Zhou, X. Qi, S. Chuan, Y. Liu, J. Dai, Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. J. Photochem. Photobiol. A Chem. 193(2–3), 81–88 (2008)CrossRef
    44.A. Sharma, S.G. Schulman, Introduction to fluorescence spectroscopy (Wiley, New York, 1999)
    45.T.K. Maiti, K.S. Ghosh, A. Samanta, S. Dasgupta, The interaction of silibinin with human serum albumin: a spectroscopic investigation. J. Photochem. Photobiol. A Chem. 194(2–3), 297–307 (2008)CrossRef
    46.D. Freifelder, Physical biochemistry: applications to biochemistry and molecular (W. H. Freeman and Company Ltd, 1976), p. 570
    47.Q. Zhang, Y. Ni, S. Kokot, Molecular spectroscopic studies on the interaction between ractopamine and bovine serum albumin. J. Pharm. Biomed. Anal. 52(2), 280–288 (2010)CrossRef
    48.Y.Q. Wang, H.-M. Zhang, G.C. Zhang, W.-H. Tao, S.-H. Tang, Binding of brucine to human serum albumin. J. Mol. Struct. 830(1–3), 40–45 (2007)CrossRef
    49.E. Froehlich, J. Mandeville, C. Jennings, R. Sedaghat-Herati, H. Tajmir-Riahi, Dendrimers bind human serum albumin. J. Phys. Chem. B. 113(19), 6986–6993 (2009)CrossRef
    50.C. Yan, H. Zhang, Y. Liu, P. Mei, K. Li, J. Tong, Fluorescence spectra of the binding reaction between paraquat and bovine serum albumin. Acta Chim. Sin. 63(18), 1727–1732 (2005)
    51.P. Naik, S. Chimatadar, S. Nandibewoor, Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study. J. Photochem. Photobiol. B 100(3), 147–159 (2010)CrossRef
    52.I. Petitpas, A.A. Bhattacharya, S. Twine, M. East, S. Curry, Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J. Biol. Chem. 276(25), 22804–22809 (2001)CrossRef
    53.M.J. Yoo, Q.R. Smith, D.S. Hage, Studies of imipramine binding to human serum albumin by high-performance affinity chromatography. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(11–12), 1149–1154 (2009)CrossRef
    54.S.S. Kalanur, J. Seetharamappa, V.K.A. Kalalbandi, Characterization of interaction and the effect of carbamazepine on the structure of human serum albumin. J. Pharm. Biomed. Anal. 53(3), 660–666 (2010)CrossRef
    55.Y.-J. Hu, Y. Liu, X.-S. Shen, X.-Y. Fang, S.-S. Qu, Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J. Mol. Struct. 738(1–3), 143–147 (2005)CrossRef
    56.P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11), 3096–3102 (1981)CrossRef
    57.G. Bai, Y. Wang, H. Yan, R.K. Thomas, J.C. Kwak, Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J. Phys. Org. Chem. 106(9), 2153–2159 (2002)CrossRef
    58.F. Ding, N. Li, B. Han, F. Liu, L. Zhang, Y. Sun, The binding of C.I. acid red 2 to human serum albumin: determination of binding mechanism and binding site using fluorescence spectroscopy. Dyes Pigments 83(2), 249–257 (2009)CrossRef
    59.A.A. Ouameur, R. Marty, H. Tajmir-Riahi, Human serum albumin complexes with chlorophyll and chlorophyllin. Biopolymers 77(3), 129–136 (2005)CrossRef
    60.X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature 358(6383), 209–215 (1992)CrossRef
    61.Y.Z. Zhang, J. Dai, X. Xiang, W.W. Li, Y. Liu, Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep. 37(3), 1541–1549 (2010)CrossRef
    62.J.T. Pelton, L.R. McLean, Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 277(2), 167–176 (2000)CrossRef
    63.F.S. Parker, Applications of infrared, raman, and resonance raman spectroscopy in biochemistry (Springer, 1983)
    64.W. Surewicz, M. Moscarello, H. Mantsch, Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry. J. Biol. Chem. 262(18), 8598–8602 (1987)
    65.I.E. Holzbaur, A.M. English, A.A. Ismail, FTIR study of the thermal denaturation of horseradish and cytochrome c peroxidases in D2O. Biochemistry 35(17), 5488–5494 (1996)CrossRef
  • 作者单位:Reza Yousefi (1) (2)
    Mehrnaz Jamshidi (1)
    Mohammad Bagher Shahsavani (1)
    S. Masoud Nabavizadeh (4)
    Mohsen Golbon Haghighi (4) (6)
    Mehdi Rashidi (4)
    Asghar Taheri-Kafrani (3)
    Ali Niazi (2)
    Fatemeh Keshavarz (1) (5)
    Mohammad Mehdi Alavinamehr (5)

    1. Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
    2. Institute of Biotechnology, Shiraz University, Shiraz, Iran
    4. Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
    6. Department of Chemistry, Shahid Beheshti University, Evin, Tehran, 19839-69411, Iran
    3. Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
    5. Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
  • 刊物主题:Analytical Chemistry; Inorganic Chemistry; Physical Chemistry; Biochemistry, general; Organic Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-2428
文摘
Human serum albumin (HSA) primarily functions as a transport carrier for a vast variety of natural ligands and pharmaceutical drugs. In the present study, three structurally related cationic Pt(II) complexes ([Pt(ppy)(dppe)]CF3CO2: 1, Pt(bhq)(dppe)]CF3CO2: 2, and [Pt(bhq)(dppf)]CF3CO2: 3) were used to evaluate their interaction with HSA under different experimental setups, using UV–Vis absorption spectroscopy, fluorescence and circular dichroism techniques. The spectroscopic results suggest that upon binding to HSA, the Pt(II) complexes could effectively induce structural alteration of the protein. The complexes can bind to HSA with the binding affinities of the following order: 3 > 2 > 1. Also, thermodynamic parameters of binding between these complexes and HSA indicated the existence of entropy-driven spontaneous interaction which primarily dominated with the hydrophobic forces. Also, docking simulation study revealed the binding details of these complexes on HSA. Complex 3 with highest binding affinity for HSA indicates lowest denaturing effect on this protein. The low denaturation properties of 3 appear important in the terms of lower susceptibility of this platinum complex for possible development of deleterious side effects. Keywords Cationic Pt(II) complexes Human serum albumin Anticancer activity Fluorescence Circular dichroism

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700