Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System
详细信息    查看全文
  • 作者:Chin Hong Wong ; Zuraini Dahari
  • 关键词:PVDF ; raindrop energy ; vibration ; piezoelectric ; micro power generator ; energy harvesting
  • 刊名:Journal of Electronic Materials
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:46
  • 期:3
  • 页码:1869-1882
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics;
  • 出版者:Springer US
  • ISSN:1543-186X
  • 卷排序:46
文摘
The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, VDC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700