Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO)
详细信息    查看全文
  • 作者:Tianyi Wang (1)
    Chunmei Zheng (1)
    Junqing Yang (1)
    Xueli Zhang (1)
    Xuedong Gong (1)
    Mingzhu Xia (1)
  • 关键词:Detonation performance ; DFT ; Sensitivity ; 1 ; 2 ; 3 ; 4 ; tetrazine
  • 刊名:Journal of Molecular Modeling
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:20
  • 期:6
  • 全文大小:
  • 参考文献:1. Tang Y, Yang H, Cheng G (2013) Synthesis and characterization of a stable, catenated N11 energetic salt. Angew Chem Int Ed 52:1- CrossRef
    2. Jorgensen KR, Oyedepo GA, Wilson AK (2011) Highly energetic nitrogen species: reliable energetics via the correlation consistent composite approach (ccCA). J Hazard Mater 186:583-89 CrossRef
    3. Liu Z, Wu Q, Zhu W (2013) Theoretical study of energetic trinitromethyl-substituted tetrazole and tetrazine derivatives. J Phys Org Chem 26:939-47 CrossRef
    4. Jaidann M, Roy S, Abou-Rachid H (2010) A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J Hazard Mater 176:165-73 CrossRef
    5. Wei T, Zhu W, Zhang X, Li Y, Xiu H (2009) Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A 113:9404-412 CrossRef
    6. Thomas JR, Quelch GE, Schaefer HF III (1997) The unknown unsubstituted tetrazines:1,2,3,4-tetrazine and 1,2,3,5-tetrazine. J Org Chem 56:539-43 CrossRef
    7. Churakov AM, Tartakovskii VA (2004) Progress in 1,2,3,4-tetrazine chemistry. Chem Rev 104:2601-616 CrossRef
    8. Bi F, Wang B, Li X, Fan X, Cheng X, Ge Z (2012) Progress in the energetic materials based on 1,2,3,4-tetrazine 1,3-dioxide. Chin J Energ Mater 5:630-37
    9. Inagake S, Goto N (1987) Nature of conjugation in hydronitrogens and fluoronitrogens excessive flow of unshared electron pairs into s-bonds. J Am Chem Soc 109:3234-240 CrossRef
    10. Glukhovtsev MN, Simkin BY, Minkin VI (1988) Stabilization of the hexaazabenzene heterocyclic system in hexazine 1,3,5-trioxide. Zh Org Khim 24:2486-488
    11. Tartakovsky VA (1996) The design of stable high nitrogen systems. Mater Res Soc Symp Proc 418:15-4 CrossRef
    12. Noyman M, Zilberg S, Haas Y (2009) Stability of polynitrogen compounds: the importance of separating the s- and p-electron systems. J Phys Chem A 113:7376-382 CrossRef
    13. Shechter H, Venugopal M, Srinivasulu D (2006) Syntheses of 1,2,3,4-tetrazine Di-N-oxides, pentazole derivatives, pentazine poly-N-oxides, and nitroacetylenes. Ohio State University Research Foundations, DARPA/AFOSR Sponsored, Project 746566. 8 March 2006
    14. Song X, Li J, Hou H, Wang B (2009) Extensive theoretical studies of a new energetic material: tetrazino-tetrazine-tetraoxide. J Comput Chem 30:1816-820 CrossRef
    15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.05. Gaussian Inc, Wallingford
    16. Wiberg KB (1986) The concept of strain in organic chemistry. Angew Chem Int Ed Engl 25:312-22 CrossRef
    17. Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547-560 CrossRef
    18. Gimarc BM, Zhao M (1997) Strain and resonance energies in maingroup homoatomic rings and clusters. Coord Chem Rev 158:385-12 CrossRef
    19. Tan B, Long X, Li J (2012) The cage strain energies of high-energy compounds. Comput Theor Chem 993:66-2 CrossRef
    20. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341-47 CrossRef
    21. Materials Studio 4.4 (2008) Accelrys, San Diego, CA
    22. Wang F, Du H, Zhang J, Gong X (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115:11788-1795 CrossRef
    23. Baur WH, Kassner D (1992) The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr Sect B: Struct Sci 48:356 CrossRef
    24. Wilson AJC (1983) Space groups rare for organic structures. I. triclinic, monoclinic and orthorhombic crystal classes. Acta Crystallogr Sect A: Found Crystallogr 44:715 CrossRef
    25. Mighell AD, Himes VL, Rodgers J (1983) Acta Crystallogr Sect A Found Crystallogr 39: 737
    26. Tsuneda T, Suzumura T, Hirao K (1999) A new one-parameter progressive colle-salvetti-type correlation functional. J Chem Phys 110:10664 CrossRef
    27. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508-17 CrossRef
    28. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756-764 CrossRef
    29. Kamlet M, Jacobs SJ (1968) Chem Phys 48:23 CrossRef
    30. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing
    31. Polotzer P, Murray JS (2011) Some perspective on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energ Mater 8:209-20
    32. Politzer P, Murray JS (1996) relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376: 419-24
    33. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978-982 CrossRef
    34. Xiao H, Li Y (1995) Banding and electronic structures of metal azides - sensitivity and conductivity. Sci Chin Ser B 38:538-45
    35. Politzer P, Murray JS, Concha MC (1998) C-H and C-NO2 dissociation energies in some azines and nitroazines. J Phys Chem A 102:6697-701 CrossRef
    36. Cao X, Xiang B, Zhang C (2012) Review on relationships between the molecular and crystal structure of explosives and their sensitivities. Chin J Energ Mater 5:643-49
    37. Tan B, Long X, Peng R, Li H, Jin B, Chu S (2011) On the shock sensitivity of explosive compounds with small-scale Gap test. J Phys Chem A 115:10610-0616 CrossRef
    38. Tan B, Long X, Li J, Nie F (2012) Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18:5127-132 CrossRef
    39. Politzer P, Lane P, Murray JS (2013) Tricyclic polyazine N-Oxides as proposed energetic compounds. Cent Eur J Energ Mater 10:305-23
    40. Dlott DD (2003) Fast molecular aspects in energetic materials. In: Politzer P, Murray JS (eds) Energetic materials, 6th edn. Elsevier, Amsterdam, pp 125-91
    41. Tsai DH, Armstrong RW (1994) Defect-enhanced structural relaxation mechanism for the evolution of hot spots in rapidly compressed crystals. J Phys Chem 98:10997-1000 CrossRef
    42. Kunz AB (1996) An Ab initio investigation of crystalline PETN. Mater Res Soc Symp Proc 418:287-92 CrossRef
    43. Rice BM, Mattson W, Trevino SF (1998) Molecular-dynamics investigation of the desensitization of detonable material. Phys Rev E 57:5106-111 CrossRef
    44. Tarver CM, Urtiew PA, Tran TD (2005) Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J Energ Mater 23:183-03 CrossRef
    45. Pospisil M, Vavra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569-574 CrossRef
    46. Politzer P, Lane P, Murray JS (2013) Computational characterization of Two Di-1,2,3,4-tetrazine tetraoxides, DTTO and iso-DTTO, as potential energetic compounds. Cent Eur J Energ Mater 10:37-2
    47. Tan B, Peng R, Long X, Li H, Jin B, Chu S (2012) An important factor in relation to chock-induced chemistry: resonance energy. J Mol Model 18:583-89 CrossRef
    48. Tan B, Huang M, Huang H, Long X, Li J, Nie F, Huang J (2013) Theoretical investigation of several 1,2,3,4-tetrazine-based high-energy compounds. Propellants Explos Pyrotech 38:372-78 CrossRef
    49. Lide DR (2009) CRC Handbook of Chemistry and Physics 2010th edn. CRC, Boca Raton
    50. Teipel U (2005) Energetic materials - particle processing and characterization. Wiley-VCH, Weinheim
    51. Klap?tke TM, Piercey DG, Stierstorfer J, Weyrauther M (2012) The synthesis and energetic properties of 5,7-dinitrobenze-1,2,3,4-tetrazine-1,3-dioxide. Propellants Explos Pyrotech 37:527-35 CrossRef
    52. He L, Dong L, Zhang G, Tan B, Huang M, Tao G (2012) Structure and properties of furazano[3,4-e]-1,2,3,4-tetrazine-1,3-dioxide. Chin J Energ Mater 6:693-96
    53. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391-396
    54. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679-691 CrossRef
    55. Zhao X, Liang Z (2013) 2,6-diamino-3,5-dinitropyrazine-1-oxide synthesis and its explosion properties. J Chem Eng Chin U 2:248-53
    56. Rice BM, Sahu S, Owens FJ (2002) Density functional calculation of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J Mol Struct (Theochem) 583:69-2 CrossRef
    57. Zhang W, Zhao X, Lin Z, Pang S, Sun C, Li S (2013) A convenient synthesis of benzo-1,2,3,4-tetrazine-1,3-dioxide. Chin J Energ Mater 4:552-53
    58. Li X, Wang B, Li H, Li Y, Bi F, Huo H, Fan X (2012) Novel synthetic route and characterization of [1,2,5]oxadiazolo-[3,4-e][1,2,3,4]tetrazine 4,6-Di-N-oxide (FTDO). Chin J Org Chem 32:1975-980 CrossRef
    59. Dong L, Zhang G, Chi Y, Fan G, He L, Tao G, Huang M (2012) Synthesis of furazano [3,4-e]-1,2,3,4-tetrazine-1,3-dioxide. Chin J Energ Mater 6:690-92
    60. Churakov AM, Ioffe SL, Strelenko YA (1990) 1,2,3,4-tetrazine 1,3-dioxides - a new class of heterocyclic compounds. Rus Chem Bull 39:639-40 CrossRef
    61. Churakov AM, Ioffe SL, Tartakovsky VA (1991) The first synthesis of 1,2,3,4-tetrazine ?,3-di-N-oxides. Mendeleev Commun 1:101-03 CrossRef
    62. Frumkin AE, Churakov AM, Strelenko YA (2000) New approach to the synthesis of benzo[e][1,2,3,4]tetrazine 1,3-dioxides. Rus Chem Bull 49:482-86 CrossRef
    63. Frumkin AE, Churakov AM, Strelenko YA (1999) Synthesis of 1,2,3,4-Tetrazino[5,6-f]benzo-1,2,3,4-tetrazine 1,3,7,9-Tetra-N-oxides. Org Lett 5:721-24 CrossRef
    64. Tartakovsky VA, Churakov AM, Ioffe SL, Strelenko YA (2004) Synthesis and structures of pyridoannelated 1,2,3,4-tetrazine 1,3-dioxides. Rus Chem Bull 53:2577-583 CrossRef
    65. Churakov AM, Ioffe SL, Tarakovsky VA (1995) Synthesis of [1,2,5]Oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-Di-N-oxide. Mendeleev Commun 5:227-28 CrossRef
  • 作者单位:Tianyi Wang (1)
    Chunmei Zheng (1)
    Junqing Yang (1)
    Xueli Zhang (1)
    Xuedong Gong (1)
    Mingzhu Xia (1)

    1. Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094, China
  • ISSN:0948-5023
文摘
The derivatives of 1,2,3,4-tetrazine may be promising candidates for high-energy density compounds and are receiving more and more attentions. In this study, a new derivative 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO) has been designed. The geometrical structure and IR spectrum in the gas phase were studied at the B3LYP/6-31G* level of density functional theory (DFT). The crystal structure was predicted by molecular mechanics method and refined by the GGA/BOP function of periodic DFT with the basis set of TNP. The gas phase enthalpy of formation was calculated by the homodesmotic reaction method. The enthalpy of sublimation and solid phase enthalpy of formation were also predicted. The detonation properties were estimated with the Kamlet-Jacobs equations based on the predicted density and enthalpy of formation in solid state. The available free space in the lattice and resonance energy were calculated to evaluate its stability. ANPTTO has a high stability and is a promising high energetic component with the density-gt;2?g?·?cm?, detonation velocity-gt;9000?m?·?s?, and detonation pressure-gt;40?GPa. A synthetic route was proposed to provide a consideration for further study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700