Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two
详细信息    查看全文
  • 作者:David Chiron ; Claire Scheid
  • 关键词:Nonlinear Schrödinger equation ; Travelling wave ; Kadomtsev–Petviashvili equation ; Constrained minimization ; Gradient flow ; Continuation method ; 35B38 ; 35C07 ; 35J20 ; 35J61 ; 35Q40 ; 35Q55 ; 35J60
  • 刊名:Journal of Nonlinear Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:171-231
  • 全文大小:6,230 KB
  • 参考文献:Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C.T., Tuckerman, L.S., Brachet, M.E.: Gross-Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 33(5–6), 509–544 (2003)MathSciNet CrossRef MATH
    Akhmediev, N., Ankiewicz, A., Grimshaw, R.: Hamiltonian-versus-energy diagrams in soliton theory. Phys. Rev. E 59(5), 6088–6096 (1999)MathSciNet CrossRef
    Barashenkov, I.: Stability criterion for dark solitons. Phys. Rev. Lett. 77, 1193–1197 (1996)CrossRef
    Barashenkov, I., Panova, E.: Stability and evolution of the quiescent and travelling solitonic bubbles. Phys. D 69(1–2), 114–134 (1993)CrossRef MATH
    Benjamin, T.: The stability of solitary waves. Proc. Roy. Soc. (London) Ser. A 328, 153–183 (1972)MathSciNet CrossRef
    Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1981)MathSciNet
    Berestycki, H., Lions, P.-L., Peletier, L.: An ODE approach to the existence of positive solutions for semilinear problems in \({\mathbb{R}}^N\) . Indiana Univ. Math. J. 30(1), 141–157 (1981)MathSciNet CrossRef MATH
    Berloff, N.: Evolution of rarefaction pulses into vortex rings. Phys. Rev. B 65, 174518 (2002)CrossRef
    Berloff, N.: Pade approximations of solitary wave solutions of the Gross–Pitaevskii equation. J. Phys. A Math. Gen. 37(5), 1617–1632 (2004)MathSciNet CrossRef MATH
    Berloff, N.: Vortex splitting in subcritical nonlinear Schrödinger equations. Special issue on vortex rings. Fluid Dyn. Res. 41, 051403 (2009)MathSciNet CrossRef
    Berloff, N., Roberts, P.: Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation. J. Phys. A Math. Gen. 37, 11333–11351 (2004)MathSciNet CrossRef MATH
    Béthuel, F., Gravejat, P., Saut, J.-C.: On the KP-I transonic limit of two-dimensional Gross–Pitaevskii travelling waves. Dyn. PDE 5(3), 241–280 (2008)MATH
    Béthuel, F., Gravejat, P., Saut, J.-C.: Travelling waves for the Gross–Pitaevskii equation. II. Commun. Math. Phys. 285(2), 567–651 (2009)CrossRef MATH
    Béthuel, F., Orlandi, G., Smets, D.: Vortex rings for the Gross–Pitaevskii equation. J. Eur. Math. Soc. 6(1), 17–94 (2004)MathSciNet CrossRef MATH
    Béthuel, F., Saut, J.-C.: Travelling waves for the Gross–Pitaevskii equation. I. Ann. Inst. H. Poincaré Phys. Théor. 70(2), 147–238 (1999)MATH
    Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’académie des sciences de l’institut de France 23 (1877)
    Brézis, H., Lieb, E.H.: Minimum action solutions for some vector field equations. Commun. Math. Phys. 96, 97–113 (1984)CrossRef MATH
    Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)MathSciNet CrossRef MATH
    Chiron, D.: Travelling waves for the Gross–Pitaevskii equation in dimension larger than two. Nonlinear Anal. Theory Methods Appl. 58(1–2), 175–204 (2004)MathSciNet CrossRef MATH
    Chiron, D.: Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one. Nonlinearity 25, 813–850 (2012)MathSciNet CrossRef MATH
    Chiron, D.: Stability and instability for subsonic travelling waves of the nonlinear Schrödinger equation in dimension one. Anal. PDE 6(6), 1327–1420 (2013)MathSciNet CrossRef MATH
    Chiron, D., Mariş, M.: Travelling waves for the nonlinear Schrödinger equation with nonzero condition at infinity. II, Preprint (2013)
    Chiron, D., Mariş, M.: Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit. Commun. Math. Phys. 326(2), 329–392 (2014)CrossRef MATH
    Dalfovo, F.: Structure of vortices in helium at zero temperature. Phys. Rev. B 46(9), 5482–5488 (1992)CrossRef
    de Bouard, A.: Instability of stationary bubbles. SIAM J. Math. Anal. 26(3), 566–582 (1995)MathSciNet CrossRef MATH
    de Bouard, A., Saut, J.-C.:. Remarks on the stability of generalized KP solitary waves, Contemp. Math., vol. 200, pp. 75–84. Am. Math. Soc., Providence, RI (1996)
    de Bouard, A., Saut, J.-C.: Solitary waves of generalized Kadomtsev–Petviashvili equations. Ann. Inst. H. Poincaré Anal. NonLinéaire 14(2), 211–236 (1997)CrossRef MATH
    Di Menza, L.: Numerical computation of solitons for optical systems. Math. Model. Numer. Anal. 43(1), 173–208 (2009)MathSciNet CrossRef MATH
    Di Menza, L., Gallo, C.: The black solitons of one-dimensional NLS equations. Nonlinearity 20(2), 461–496 (2007)MathSciNet CrossRef MATH
    Gravejat, P.: Asymptotics for the travelling waves in the Gross–Pitaevskii equation. Asymptot. Anal. 45(3–4), 227–299 (2005)MathSciNet MATH
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)MathSciNet CrossRef MATH
    Jones, C., Putterman, S., Roberts, P.: Motions in a Bosecondensate V. Stability of wave solutions of nonlinearSchrödinger equations in two and three dimensions. J. Phys. A Math. Gen. 19, 2991–3011 (1986)CrossRef
    Jones, C., Roberts, P.: Motion in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A Math. Gen. 15, 2599–2619 (1982)CrossRef
    Khaykovich, L., Malomed, B.: Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons. Phys. Rev. A 74, 023607 (2006)CrossRef
    Kivshar, Y., Anderson, D., Lisak, M.: Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger-equation. Phys. Scr. 47, 679–681 (1993)CrossRef
    Kivshar, Y., Krolikowski, W.: Instabilities of dark solitons. Opt. Lett. 20(14), 1527–1529 (1995)CrossRef
    Kivshar, Y., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)CrossRef
    Kivshar, Y., Pelinovsky, D.: Self-focusing and transverse instabilities of solitary waves. Phys. Rep. 331, 117–195 (2000)MathSciNet CrossRef
    Kivshar, Y., Yang, X.: Perturbation-induced dynamics of dark solitons. Phys. Rev. E 49, 1657–1670 (1994)MathSciNet CrossRef
    Kolomeisky, E., Newman, T., Straley, J., Qi, X.: Low-dimensional Bose liquids: beyond the Gross–Pitaevskii approximation. Phys. Rev. Lett. 85, 1146–1149 (2000)CrossRef
    Lin, Z.: Stability and instability of travelling solitonic bubbles. Adv. Differ. Equ. 7(8), 897–918 (2002)MATH
    Lin, Z., Wang, Z., Zeng, C.: Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity. Preprint
    Manakov, S., Zakharov, V., Bordag, L., Matveev, V.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)CrossRef
    Mariş, M.: Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. SIAM J. Math. Anal. 40(3), 1076–1103 (2008)MathSciNet CrossRef MATH
    Mariş, M.: Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Ann. Math. 178, 107–182 (2013)CrossRef MATH
    Papanicolaou, N., Spathis, P.: Semitopological solitons in planar ferromagnets. Nonlinearity 12(2), 285–302 (1999)MathSciNet CrossRef MATH
    Pelinovsky, D., Stepanyants, Y.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42(3), 1110–1127 (2004)MathSciNet CrossRef MATH
    Petviashvili, V.: Equation of an extraordinary soliton. Plasma Phys. 2, 469–472 (1976)
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press. [Harcourt Brace Jovanovich Publishers], New York (1978)
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press. [Harcourt Brace Jovanovich Publishers], New York (1980)
    Roberts, P., Berloff, N.: Nonlinear Schrödinger Equation as a Model of Superfluid Helium. Lecture Notes in Physics, vol. 571. Springer, Providence, RI (2001)
    Sinha, S., Cherny, A., Kovrizhin, D., Brand, J.: Friction and diffusion of matter-wave bright solitons. Phys. Rev. Lett. 96, 030406 (2006)CrossRef
    Vakhitov, N., Kolokolov, A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16(7), 783–789 (1973)CrossRef
    Weinstein, Michael I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)MathSciNet CrossRef MATH
    Zakharov, V., Kuznetsov, A.: Multi-scale expansion in the theory of systems integrable by the inverse scattering transform. Phys. D 18(1–3), 455–463 (1986)MathSciNet CrossRef MATH
  • 作者单位:David Chiron (1)
    Claire Scheid (1) (2)

    1. Laboratoire J.A. Dieudonné, Université de Nice-Sophia Antipolis, Parc Valrose, 06108, Nice Cedex 02, France
    2. INRIA Sophia Antipolis-Méditerranée Research Center, NACHOS Project-Team, 06902, Sophia Antipolis Cedex, France
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Analysis
    Mathematical and Computational Physics
    Mechanics
    Applied Mathematics and Computational Methods of Engineering
    Economic Theory
  • 出版者:Springer New York
  • ISSN:1432-1467
文摘
We investigate numerically the two-dimensional travelling waves of the nonlinear Schrödinger equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy–momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities. Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross–Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified KP-I asymptotic in the transonic limit, various multiplicity results and “one-dimensional spreading” phenomena. Keywords Nonlinear Schrödinger equation Travelling wave Kadomtsev–Petviashvili equation Constrained minimization Gradient flow Continuation method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700