Selective Modulation of Histaminergic Inputs on Projection Neurons of Cerebellum Rapidly Promotes Motor Coordination via HCN Channels
详细信息    查看全文
  • 作者:Jun Zhang ; Qian-Xing Zhuang ; Bin Li ; Guan-Yi Wu ; Wing-Ho Yung…
  • 关键词:Histamine ; Histamine H2 receptor ; HCN channel ; Cerebellar nuclei ; Projection neurons ; Motor control
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:53
  • 期:2
  • 页码:1386-1401
  • 全文大小:4,856 KB
  • 参考文献:1.Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ (2006) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52(1):93–106CrossRef PubMed
    2.Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ (2011) A role for orexin in central vestibular motor control. Neuron 69(4):793–804CrossRef PubMed
    3.Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130CrossRef PubMed
    4.Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241CrossRef PubMed
    5.Dietrichs E (1984) Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science 223(4636):591–593CrossRef PubMed
    6.Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107CrossRef PubMed
    7.Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28(3):585–610CrossRef PubMed
    8.Panula P, Takagi H, Inagaki N, Yamatodani A, Tohyama M, Wada H, Kotilainen E (1993) Histamine-containing nerve fibers innervate human cerebellum. Neurosci Lett 160(1):53–56CrossRef PubMed
    9.Airaksinen MS, Panula P (1988) The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol 273(2):163–186CrossRef PubMed
    10.Arrang JM, Drutel G, Garbarg M, Ruat M, Traiffort E, Schwartz JC (1995) Molecular and functional diversity of histamine receptor subtypes. Ann N Y Acad Sci 757:314–323CrossRef PubMed
    11.Vizuete ML, Traiffort E, Bouthenet ML, Ruat M, Souil E, Tardivel-Lacombe J, Schwartz JC (1997) Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience 80(2):321–343CrossRef PubMed
    12.Honrubia MA, Vilaro MT, Palacios JM, Mengod G (2000) Distribution of the histamine H(2) receptor in monkey brain and its mRNA localization in monkey and human brain. Synapse 38(3):343–354CrossRef PubMed
    13.Karlstedt K, Senkas A, Ahman M, Panula P (2001) Regional expression of the histamine H(2) receptor in adult and developing rat brain. Neuroscience 102(1):201–208CrossRef PubMed
    14.He YC, Wu GY, Li D, Tang B, Li B, Ding Y, Zhu JN, Wang JJ (2012) Histamine promotes rat motor performances by activation of H(2) receptors in the cerebellar fastigial nucleus. Behav Brain Res 228(1):44–52CrossRef PubMed
    15.Song YN, Li HZ, Zhu JN, Guo CL, Wang JJ (2006) Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 140(1):33–43CrossRef PubMed
    16.Uusisaari MY, Knopfel T (2012) Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum 11(2):420–421CrossRef PubMed
    17.Manto M, Gruol D, Schmahmann J, Koibuchi N, Rossi F (2012) Handbook of the cerebellum and cerebellar disorders. Springer, New York
    18.Ito M (2011) The cerebellum: brain for an implicit self. FT Press, New Jersey
    19.Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3–5):272–303CrossRef PubMed
    20.Llinás RR, Walton KD, Lang EJ (2004) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New York, pp 271–310CrossRef
    21.Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol 85(5):2017–2029PubMed
    22.Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89(4):1738–1747CrossRef PubMed
    23.Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911CrossRef PubMed
    24.Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego
    25.Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ (2013) Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 170(1):156–169PubMedCentral CrossRef PubMed
    26.Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, Dietz DM, Pan N, Vialou VF, Neve RL, Yue Z, Han MH (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344(6181):313–319PubMedCentral CrossRef PubMed
    27.Lazarov N, Rozloznik M, Reindl S, Rey-Ares V, Dutschmann M, Gratzl M (2006) Expression of histamine receptors and effect of histamine in the rat carotid body chemoafferent pathway. Eur J Neurosci 24(12):3431–3444CrossRef PubMed
    28.Zhang CZ, Zhuang QX, He YC, Li GY, Zhu JN, Wang JJ (2014) 5-HT receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats. Pflugers Arch 466:1259–1271CrossRef PubMed
    29.Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82(4):1697–1709PubMed
    30.de Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284(1):12–35CrossRef PubMed
    31.Schwarz C, Schmitz Y (1997) Projection from the cerebellar lateral nucleus to precerebellar nuclei in the mossy fiber pathway is glutamatergic: a study combining anterograde tracing with immunogold labeling in the rat. J Comp Neurol 381(3):320–334CrossRef PubMed
    32.Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29(32):10104–10110PubMedCentral CrossRef PubMed
    33.Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179(1):23–48CrossRef PubMed
    34.Pugh JR, Raman IM (2008) Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 28(42):10549–10560PubMedCentral CrossRef PubMed
    35.Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19(5):1663–1674PubMed
    36.Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302(5907):432–434CrossRef PubMed
    37.Sastry BR, Morishita W, Yip S, Shew T (1997) GABA-ergic transmission in deep cerebellar nuclei. Prog Neurobiol 53(2):259–271CrossRef PubMed
    38.Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548(Pt 1):53–69PubMedCentral CrossRef PubMed
    39.Inoue I, Yanai K, Kitamura D, Taniuchi I, Kobayashi T, Niimura K, Watanabe T, Watanabe T (1996) Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S A 93(23):13316–13320PubMedCentral CrossRef PubMed
    40.Onodera K, Yamatodani A, Watanabe T, Wada H (1994) Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 42(6):685–702CrossRef PubMed
    41.Toyota H, Dugovic C, Koehl M, Laposky AD, Weber C, Ngo K, Wu Y, Lee DH, Yanai K, Sakurai E, Watanabe T, Liu C, Chen J, Barbier AJ, Turek FW, Fung-Leung WP, Lovenberg TW (2002) Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 62(2):389–397CrossRef PubMed
    42.Husson Z, Rousseau CV, Broll I, Zeilhofer HU, Dieudonne S (2014) Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. J Neurosci 34(28):9418–9431CrossRef PubMed
    43.Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327CrossRef PubMed
    44.Uusisaari M, Knopfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9(1):42–55PubMedCentral CrossRef PubMed
    45.Li B, Zhu JN, Wang JJ (2014) Histaminergic afferent system in the cerebellum: structure and function. Cerebellum Ataxias 1:5PubMedCentral CrossRef PubMed
    46.Korotkova TM, Haas HL, Brown RE (2002) Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett 320(3):133–136CrossRef PubMed
    47.Munakata M, Akaike N (1994) Regulation of K+ conductance by histamine H1 and H2 receptors in neurones dissociated from rat neostriatum. J Physiol 480(Pt 2):233–245PubMedCentral CrossRef PubMed
  • 作者单位:Jun Zhang (1) (3)
    Qian-Xing Zhuang (1)
    Bin Li (1)
    Guan-Yi Wu (1)
    Wing-Ho Yung (2)
    Jing-Ning Zhu (1)
    Jian-Jun Wang (1)

    1. State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
    3. Department of Physiology, Third Military Medical University, Chongqing, 400038, China
    2. School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Insights into function of central histaminergic system, a general modulator originating from the hypothalamus for whole brain activity, in motor control are critical for understanding the mechanism underlying somatic-nonsomatic integration. Here, we show a novel selective role of histamine in the cerebellar nuclei, the final integrative center and output of the cerebellum. Histamine depolarizes projection neurons but not interneurons in the cerebellar nuclei via the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to histamine H2 receptors, which are exclusively expressed on glutamatergic and glycinergic projection neurons. Furthermore, blockage of HCN channels to block endogenous histaminergic afferent inputs in the cerebellar nuclei significantly attenuates motor balance and coordination. Therefore, through directly and quickly modulation on projection neurons but not interneurons in the cerebellar nuclei, central histaminergic system may act as a critical biasing force to not only promptly regulate ongoing movement but also realize a rapid integration of somatic and nonsomatic response. Keywords Histamine Histamine H2 receptor HCN channel Cerebellar nuclei Projection neurons Motor control

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700