Epigenetic regulation of early neural fate commitment
详细信息    查看全文
  • 作者:Yunbo Qiao ; Xianfa Yang ; Naihe Jing
  • 关键词:Early neural fate commitment ; Epigenetic regulation ; Histone modification ; DNA methylation ; Chromatin remodeling
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:73
  • 期:7
  • 页码:1399-1411
  • 全文大小:1,799 KB
  • 参考文献:1.Wilson SI, Edlund T (2001) Neural induction: toward a unifying mechanism. Nat Neurosci 4(Suppl):1161–1168PubMed CrossRef
    2.Streit A et al (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406(6791):74–78PubMed CrossRef
    3.Tang K et al (2015) Intrinsic regulations in neural fate commitment. Dev Growth Differ 57(2):109–120PubMed CrossRef
    4.Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560PubMed PubMedCentral CrossRef
    5.Stavridis MP, Smith AG (2003) Neural differentiation of mouse embryonic stem cells. Biochem Soc Trans 31(Pt 1):45–49PubMed CrossRef
    6.Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11(6):377–388PubMed CrossRef
    7.Azuara V et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8(5):532–538PubMed CrossRef
    8.Lopez-Ramirez MA, Nicoli S (2014) Role of miRNAs and epigenetics in neural stem cell fate determination. Epigenetics 9(1):90–100PubMed PubMedCentral CrossRef
    9.Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117PubMed CrossRef
    10.Avilion AA et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140PubMed PubMedCentral CrossRef
    11.Coskun V, Tsoa R, Sun YE (2012) Epigenetic regulation of stem cells differentiating along the neural lineage. Curr Opin Neurobiol 22(5):762–767PubMed PubMedCentral CrossRef
    12.Pera EM et al (2014) Active signals, gradient formation and regional specificity in neural induction. Exp Cell Res 321(1):25–31PubMed CrossRef
    13.Hawley SH et al (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9(23):2923–2935PubMed CrossRef
    14.Sasai Y et al (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376(6538):333–336PubMed CrossRef
    15.Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376(6538):331–333PubMed CrossRef
    16.Liu P et al (2015) Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nat Commun 6:6830PubMed CrossRef
    17.Li L, Jing N (2011) Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2(2):298–312
    18.Linker C, Stern CD (2004) Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131(22):5671–5681PubMed CrossRef
    19.Pera EM et al (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17(24):3023–3028PubMed PubMedCentral CrossRef
    20.Li VC, Kirschner MW (2014) Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proc Natl Acad Sci USA 111(26):9503–9508PubMed PubMedCentral CrossRef
    21.Qiao Y et al (2015) Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290(16):9949PubMed PubMedCentral CrossRef
    22.Zhang K et al (2010) Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development 137(13):2095–2105PubMed CrossRef
    23.Li L et al (2013) Location of transient ectodermal progenitor potential in mouse development. Development 140(22):4533–4543PubMed CrossRef
    24.Zhang T et al (2013) The zinc finger transcription factor Ovol2 acts downstream of the bone morphogenetic protein pathway to regulate the cell fate decision between neuroectoderm and mesendoderm. J Biol Chem 288(9):6166–6177PubMed PubMedCentral CrossRef
    25.Qiao Y et al (2012) AP2gamma regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning. Cell Res 22(11):1546–1561PubMed PubMedCentral CrossRef
    26.Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMed CrossRef
    27.Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMed PubMedCentral CrossRef
    28.Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199PubMed CrossRef
    29.Brons IG et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195PubMed CrossRef
    30.Vallier L et al (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4(6):e6082PubMed PubMedCentral CrossRef
    31.Li L et al (2015) Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. J Mol Cell Biol 7(5):455–465PubMed CrossRef
    32.Hawrylycz MJ et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399PubMed PubMedCentral CrossRef
    33.Kang HJ et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489PubMed PubMedCentral CrossRef
    34.Schultz MD et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523(7559):212–216PubMed PubMedCentral CrossRef
    35.Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMed CrossRef
    36.Zhang SC et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133PubMed CrossRef
    37.Yan Y et al (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790PubMed PubMedCentral CrossRef
    38.Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16(2):132–142PubMed CrossRef
    39.Egger G et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463PubMed CrossRef
    40.Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080PubMed CrossRef
    41.Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15(2):163–176PubMed CrossRef
    42.Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMed CrossRef
    43.Ziller MJ et al (2015) Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518(7539):355–359PubMed PubMedCentral CrossRef
    44.Benayoun BA et al (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158(3):673–688PubMed PubMedCentral CrossRef
    45.Boyer LA et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353PubMed CrossRef
    46.Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326PubMed CrossRef
    47.Huang C et al (2010) Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res 20(2):154–165PubMed CrossRef
    48.Tachibana M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791PubMed PubMedCentral CrossRef
    49.Lee ER, Murdoch FE, Fritsch MK (2007) High histone acetylation and decreased Polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells 25(9):2191–2199PubMed CrossRef
    50.Mali P et al (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28(4):713–720PubMed PubMedCentral CrossRef
    51.Ware CB et al (2009) Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 4(4):359–369PubMed PubMedCentral CrossRef
    52.Balmer NV et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21(18):4104–4114PubMed CrossRef
    53.Hezroni H, Sailaja BS, Meshorer E (2011) Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J Biol Chem 286(41):35977–35988PubMed PubMedCentral CrossRef
    54.Jin Q et al (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262PubMed PubMedCentral CrossRef
    55.Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA 107(18):8242–8247PubMed PubMedCentral CrossRef
    56.Fang F et al (2014) Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure. Stem Cells 32(7):1805–1816PubMed CrossRef
    57.Gallinari P et al (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17(3):195–211PubMed
    58.Li Z et al (2015) Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 43(8):3986–3997PubMed PubMedCentral CrossRef
    59.Guo F et al (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15(4):447–458PubMed CrossRef
    60.He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307PubMed PubMedCentral CrossRef
    61.Kobayashi H, Kikyo N (2015) Epigenetic regulation of open chromatin in pluripotent stem cells. Transl Res 165(1):18–27PubMed PubMedCentral CrossRef
    62.Li JY et al (2007) Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27(24):8748–8759PubMed PubMedCentral CrossRef
    63.Dawlaty MM et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9(2):166–175PubMed PubMedCentral CrossRef
    64.Xu Y et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42(4):451–464PubMed PubMedCentral CrossRef
    65.Xu Y et al (2012) Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151(6):1200–1213PubMed PubMedCentral CrossRef
    66.Guo JU et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145(3):423–434PubMed PubMedCentral CrossRef
    67.Koh KP et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213PubMed PubMedCentral CrossRef
    68.Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905PubMed PubMedCentral CrossRef
    69.Numata S et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90(2):260–272PubMed PubMedCentral CrossRef
    70.Qiao Y et al (2015) AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discov 1:15017CrossRef
    71.Langemeijer SM, Aslanyan MG, Jansen JH (2009) TET proteins in malignant hematopoiesis. Cell Cycle 8(24):4044–4048PubMed CrossRef
    72.Yu C et al (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342(6165):1518–1521PubMed CrossRef
    73.Perera A et al (2015) TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep 11(2):283–294PubMed CrossRef
    74.Heyn H, Esteller M (2015) An adenine code for DNA: a second life for N6-methyladenine. Cell 161(4):710–713PubMed CrossRef
    75.Fu Y et al (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161(4):879–892PubMed CrossRef
    76.Zhang G et al (2015) N6-methyladenine DNA modification in Drosophila. Cell 161(4):893–906PubMed CrossRef
    77.Greer EL et al (2015) DNA methylation on N6-adenine in C. elegans. Cell 161(4):868–878PubMed CrossRef
    78.Ballas N et al (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121(4):645–657PubMed CrossRef
    79.Singh SK et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453(7192):223–227PubMed PubMedCentral CrossRef
    80.Jorgensen HF et al (2009) REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136(5):715–721PubMed PubMedCentral CrossRef
    81.Cho KS, Elizondo LI, Boerkoel CF (2004) Advances in chromatin remodeling and human disease. Curr Opin Genet Dev 14(3):308–315PubMed CrossRef
    82.Seo S, Richardson GA, Kroll KL (2005) The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132(1):105–115PubMed CrossRef
    83.Dirscherl SS, Henry JJ, Krebs JE (2005) Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech Dev 122(11):1157–1170PubMed CrossRef
    84.Ho L et al (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 106(13):5187–5191PubMed PubMedCentral CrossRef
    85.Lessard J et al (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55(2):201–215PubMed PubMedCentral CrossRef
    86.Mattick JS (2005) The functional genomics of noncoding RNA. Science 309(5740):1527–1528PubMed CrossRef
    87.Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14 Spec No 1: R121–R132
    88.Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMed CrossRef
    89.Zamore PD et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33PubMed CrossRef
    90.Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296(5571):1270–1273PubMed CrossRef
    91.Jepsen K et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168):415–419PubMed CrossRef
    92.Wang L et al (2006) Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J Cereb Blood Flow Metab 26(4):556–564PubMed CrossRef
    93.Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMed CrossRef
    94.Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMed CrossRef
    95.Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355PubMed CrossRef
    96.Sempere LF et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13PubMed PubMedCentral CrossRef
    97.Smirnova L et al (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477PubMed CrossRef
    98.Le MT et al (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305PubMed PubMedCentral CrossRef
    99.Zhao C et al (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci 107(5):1876–1881PubMed PubMedCentral CrossRef
    100.Krichevsky AM et al (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864PubMed PubMedCentral CrossRef
    101.Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563PubMed CrossRef
    102.Birney E et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146):799–816PubMed CrossRef
    103.Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19(7–8):454–492PubMed CrossRef
    104.Dinger ME et al (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445PubMed PubMedCentral CrossRef
    105.Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMed PubMedCentral CrossRef
    106.Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol 7(8):612–616PubMed CrossRef
    107.Sanchez-Elsner T et al (2006) Noncoding RNAs of Trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311(5764):1118–1123PubMed CrossRef
    108.Nagano T et al (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322(5908):1717–1720PubMed CrossRef
    109.Lin N et al (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53(6):1005–1019PubMed PubMedCentral CrossRef
    110.Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533PubMed PubMedCentral CrossRef
    111.Tochitani S, Hayashizaki Y (2008) Nkx2. 2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun 372(4):691–696PubMed CrossRef
    112.Bond AM et al (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12(8):1020–1027PubMed PubMedCentral CrossRef
    113.Dominissini D et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206PubMed CrossRef
    114.Meyer KD et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646PubMed PubMedCentral CrossRef
    115.Motorin Y, Helm M (2011) RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2(5):611–631PubMed CrossRef
    116.Grosjean H (2015) RNA modification: the Golden Period 1995–2015. RNA 21(4):625–626PubMed PubMedCentral CrossRef
    117.Fu Y et al (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15(5):293–306PubMed CrossRef
    118.Wang Y et al (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198PubMed PubMedCentral CrossRef
    119.Clancy MJ et al (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30(20):4509–4518PubMed PubMedCentral CrossRef
    120.Geula S et al (2015) m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347(6225):1002–1006PubMed CrossRef
    121.Batista PJ et al (2014) m 6 A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15(6):707–719PubMed PubMedCentral CrossRef
    122.Jalkanen AL, Wilusz J (2014) Stem cell RNA epigenetics: M 6 arking your territory. Cell Stem Cell 15(6):669–670PubMed CrossRef
    123.Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528–541PubMed PubMedCentral CrossRef
    124.Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206PubMed CrossRef
    125.Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6(17):2127–2132PubMed CrossRef
    126.Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20(12):617–624PubMed CrossRef
    127.Morais VA et al (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1(2):99–111PubMed PubMedCentral CrossRef
    128.Scheele C et al (2007) The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genom 8(1):74CrossRef
    129.Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254PubMed CrossRef
    130.Zhu Q et al (2014) The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. Elife 3:e02224PubMedCentral CrossRef
    131.Burgold T et al (2008) The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3(8):e3034PubMed PubMedCentral CrossRef
    132.Qiao Y et al (2015) Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290(4):2508–2520PubMed PubMedCentral CrossRef
    133.Glozak MA et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23PubMed CrossRef
    134.Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17PubMed CrossRef
    135.Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMed CrossRef
    136.Picelli S et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181PubMed CrossRef
    137.Guo H et al (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135PubMed PubMedCentral CrossRef
  • 作者单位:Yunbo Qiao (1)
    Xianfa Yang (1) (2)
    Naihe Jing (1) (2)

    1. State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
    2. School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700