Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution
详细信息    查看全文
  • 作者:Qinghua Cui ; Yelong Zhang ; Zhangquan Peng
  • 关键词:Silver nanoparticles ; Electrochemical activity ; Oxygen reduction reaction
  • 刊名:Chemical Research in Chinese Universities
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:106-111
  • 全文大小:439 KB
  • 参考文献:[1]Borup R., Meyer J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenary P., More K., Stroh K., Zawodzinski T., Macgrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K., Iwashita N., Chem. Rev., 2007, 107(10), 3904CrossRef
    [2]Liang Y., Li Y., Wang H., Zhou J., Wang J., Regier T., Dai H., Nat. Mater., 2011, 10(10), 780CrossRef
    [3]Liu M., Zhang R., Chen W., Chem. Rev., 2014, 114(10), 5117CrossRef
    [4]Voiry D., Yamaguchi H., Li J., Silva R., Alves D. C. B., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M., Nat. Mater., 2013, 12(9), 850CrossRef
    [5]Suntivich J., Gasteiger H. A., Yabuuchi N., Nakanishi H., Goodenough J. B., Yang S. H., Nat. Chem., 2011, 3(7), 546CrossRef
    [6]Cui C. H., Li H. H., Yu J. W., Gao M. R., Yu S. H., Angew. Chem. Int. Ed., 2010, 49(48), 9149CrossRef
    [7]Lu Y. C., Xu Z., Gasteiger H. A., Chen S., Hamad-Schifferli K., Yang S. H., J. Am. Chem. Soc., 2010, 132(35), 12170CrossRef
    [8]Wang Y. J., Wilkinson D. P., Zhang J., Chem. Rev., 2011, 111(12), 7625CrossRef
    [9]Guo S. J., Zhang S., Sun S. H., Angew. Chem. Int. Ed., 2013, 52(33), 8526CrossRef
    [10]Gewirth A. A., Thorum M. S., Inorg. Chem., 2010, 49(8), 3557CrossRef
    [11]Choe J. E., You J. M., Yun M., Lee K., Ahmed M. S., Üstündag Z., Jeon S., J. Nanosci. Nanotechnol., 2015, 15(8), 5684CrossRef
    [12]Lee K., Ahmed M. S., Jeon S., J. Electrochem. Soc., 2015, 162(1), F1CrossRef
    [13]Lu Y., Chen W., J. Power Sources, 2012, 197, 107CrossRef
    [14]Zhao D. J., Ma S. Y., Chem. Res. Chinese Universities, 2015, 31(3), 447CrossRef
    [15]Jiang H. J., Wang F. B., Gao Y., Xing W., Shi B. C., Feng Y. Y., Yang H., Lu T. H., Chem. Res. Chinese Universities, 2003, 19(1), 54
    [16]Jeong E., Ahmed M. S., Jeong H., Lee E., Jeon S., Bull. Korean Chem. Soc., 2011, 32(3), 800CrossRef
    [17]Wiley B., Sun Y., Xia Y., Acc. Chem. Res., 2007, 40(10), 1067CrossRef
    [18]Demarconnay L., Coutanceau C., Leger J. M., Electrochim. Acta, 2004, 49(25), 4513CrossRef
    [19]Blizanac B. B., Ross P. N., Markovic N. M., J. Phys. Chem. B, 2006, 110(10), 4735CrossRef
    [20]Blizanac B. B., Ross P. N., Markovic N. M., Electrochim. Acta, 2007, 52(6), 2264CrossRef
    [21]Ahern A. J., Nagle L. C., Burke L. D., J. Solid State Electrochem., 2002, 6(7), 451CrossRef
    [22]Chatenet M., Genies-Bultel L., Aurousseau M., Durand R., Andolfatto F., J. Appl. Electrochem., 2002, 32(10), 1131CrossRef
    [23]Kou T. Y., Li D. W., Zhang C., Zhang Z. H., Yang H., J. Mol. Catal. A: Chem., 2014, 382, 55CrossRef
    [24]Singh P., Buttry D. A., J. Phys. Chem. C, 2012, 116(19), 10656CrossRef
    [25]Guo S., Zhang X., Zhu W., He K., Su D., Mendoza-Garcia A., Ho S. F., Lu G., Sun S., J. Am. Chem. Soc., 2014, 136(42), 15026CrossRef
    [26]Herrero E., Buller L. J., Abruna H. D., Chem. Rev., 2001, 101(7), 1897CrossRef
    [27]Kirowa-Eisner E., Bonfil Y., Tzur D., Gileadi E., J. Electroanal. Chem., 2003, 552, 171CrossRef
    [28]Stevenson K. J., Hatchett D. W., White H. S., Langmuir, 1996, 12(2), 494CrossRef
    [29]Damjanovic A., Genshaw M. A., Bockris J. O. M., J. Electrochem. Soc., 1967, 114, 466CrossRef
    [30]Reyes-Rodriguez J. L., Godinez-Salomon F., Leyva M. A., Solorza-Feria O., Int. J. Hydrog. Energy, 2013, 38(28), 12634CrossRef
    [31]Bard A. J., Faulkner L. R., Electrochemical Methods, Wiley, New York, 1980
    [32]Chatenet M., Aurousseau M., Durand R., Andolfatto F., J. Electrochem. Soc., 2003, 150(3), 47CrossRef
    [33]Lima F. H. B., Ticianelli E. A., Electrochim. Acta, 2004, 49(24), 4091CrossRef
    [34]Sepa D. B., Vojnovic M. V., Vracar L. J. M., Damjanovic A., Electrochim. Acta, 1981, 26(6), 781CrossRef
    [35]Tammeveski K., Tenno T., Claret J., Ferrater C., Electrochim. Acta, 1997, 42(19), 893CrossRef
  • 作者单位:Qinghua Cui (1) (2)
    Yelong Zhang (1) (2)
    Zhangquan Peng (1)

    1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
    2. University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
  • 刊物主题:Chemistry/Food Science, general; Analytical Chemistry; Inorganic Chemistry; Organic Chemistry; Physical Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2210-3171
文摘
Silver nanoparticles(Ag NPs) were prepared by dealloying Mg-Ag alloy precursor. The obtained Ag NPs have an average ligament size of (50±10) nm. Electrocatalytic activity of Ag NPs towards oxygen reduction reaction( ORR) in 0.1 mol/L NaOH solution was assessed via cyclic voltammetry(CV), rotating ring disk electrode(RRDE) techniques, and electrochemical impedance spectroscopy(EIS). The electrochemical active area for the ORR was evaluated by means of the charge of the underpotential deposition(UPD) of lead(Pb) on Ag NPs. The CV results indicate that Ag NPs have a higher current density and more positive onset potential than the bulk Ag electrode. RRDE was employed to determine kinetic parameters for O2 reduction. Ag NPs exhibit a higher kinetic current density of 25.84 mA/cm2 and a rate constant of 5.45×10–2 cm/s at–0.35 V vs. Hg/HgO. The number of electrons(n) involved in ORR is close to 4. Further, EIS data show significantly low charge transfer resistances on the Ag NPs electrode. The results indicate that the prepared Ag NPs have a high activity and are promising catalyst for ORR in alkaline solution. Keywords Silver nanoparticles Electrochemical activity Oxygen reduction reaction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700