Modulating the thermal conductivity of silicon nanowires via surface amorphization
详细信息    查看全文
  • 作者:XiangJun Liu (1)
    Gang Zhang (1)
    QingXiang Pei (1)
    YongWei Zhang (1)
  • 关键词:thermal conductivity ; thermoelectric ; molecular dynamics ; silicon nanowire
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:57
  • 期:4
  • 页码:699-705
  • 全文大小:752 KB
  • 参考文献:1. Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9: 18鈥?7 CrossRef
    2. Wu Z, Zhang Y, Jhon M H, et al. Nanowire failure: Long = brittle and short =ductile. Nano Lett, 2012, 12: 910鈥?14 CrossRef
    3. Zhang Y. Surface stability and evolution of biaxially strained epitaxial thin films. Appl Phys Lett, 2005, 87: 121916-1鈥?
    4. Lu W, Lieber C M. Nanoelectronics from the bottom up. Nature Mater, 2007, 6: 841鈥?50 CrossRef
    5. Zhang G J, Zhang G, Chua H J, et al. DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett, 2008, 8: 1066鈥?070 CrossRef
    6. Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences, 2010, 107: 17491鈥?7496 CrossRef
    7. Wong S M, Yu H Y, Li J S, et al. Design high-efficiency Si nanopillar-array-textured thin-film solar cell. IEEE Electron Device Lett, 2010, 31: 335鈥?37 CrossRef
    8. Li H, Jia R, Ding W, et al. The analysis of electrical performances of nanowires silicon solar cells. Sci China Tech Sci, 2011, 54: 3341鈥?346 CrossRef
    9. Hochbaum A I, Chen R, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451: 163鈥?67 CrossRef
    10. Boukai A I, Bunimovich Y, Kheli J T, et al. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451: 168鈥?71 CrossRef
    11. Zhang G, Zhang Q, Kavitha D, et al. Time dependent thermoelectric performance of a bundle of silicon naowires for on-chip cooler applications. Appl Phys Lett, 2009, 95: 243104-1鈥?
    12. Zhang G, Zhang Q, Bui C, et al. Thermoelectric performance of silicon nanowires. Appl Phys Lett, 2009, 94: 213108-1鈥?
    13. Tritt T M. Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res, 2011, 41: 433鈥?48 CrossRef
    14. Wang Z, Zhao R, Chen Y. Monte Carlo simulation of phonon transport in variable cross-section nanowires. Sci China Tech Sci, 2010, 53: 429鈥?34 CrossRef
    15. Chen Y, Li D, Yang J, et al. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires. Physica B, 2004, 349: 270鈥?80 CrossRef
    16. Yang N, Zhang G, Li B. Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett, 2008, 8: 276鈥?80 CrossRef
    17. Chen J, Zhang G, Li B. Tunable thermal conductivity of Si1鈭?em class="a-plus-plus">x Gex nanowires. Appl Phys Lett, 2009, 95: 073117-1鈥?
    18. Chen J, Zhang G, Li B. Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett, 2010, 10: 3978鈥?983 CrossRef
    19. Yang Y W, Liu X J, Yang J P. Nonequilibrium molecular dynamics simulation for size effects on thermal conductivity of Si nanostructures. Molecular Simulation, 2008, 34: 51鈥?6 CrossRef
    20. Xie Z X, Chen K Q, Tang L M. Ballistic phonon thermal transport in a cylindrical semiconductor nanowire modulated with nanocavity. J Appl Phys, 2011, 110: 124321-1鈥? CrossRef
    21. Peng X, Chen K Q, Wan Q, et al. Quantized thermal conductance at low temperatures in quantum wire with catenoidal contacts. Phys Rev B, 2010, 81: 195317-1鈥?
    22. Peng X F, Chen K Q. Ballistic thermal transport in quantum wire modulated with two coupling quantum dots. Physica E, 2010, 42: 1968鈥?972 CrossRef
    23. Peng X F, Wang X J. Quantum restricted effects on ballistic thermal conductance associated with six types of vibration modes in nanowire superlattice. J Appl Phys, 2011, 110: 044305-1鈥?
    24. Li H P, Sarkar A D, Zhang R Q. Surface-nitrogenation-induced thermal conductivity attenuation in silicon nanowires. Europhys Lett, 2011, 96: 56007-1鈥?
    25. Chen J, Zhang G, Li B. A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries. J Chem Phys, 2011, 135: 204705-1鈥?
    26. Tang J, Huo Z, Brittman S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nature Nanotechnol, 2011, 6: 568鈥?72 CrossRef
    27. Lu L X, Bharathi M S, Zhang Y W. Self-assembly of ordered epitaxial nanostructures on polygonal nanowires. Nano Lett, 2013, 13: 538鈥?42 CrossRef
    28. Vastola G, Shenoy V B, Zhang Y W. Controlling the interface composition of core-shell and axial heterojunction nanowires. J Appl Phys, 2012, 112: 064311-1鈥? CrossRef
    29. Yang R, Chen G. Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett, 2005, 5: 1111鈥?115 CrossRef
    30. Chen J, Zhang G, Li B. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. J Chem Phys, 2011, 135: 104508-1鈥?
    31. Hu M, Giapis K P, Goicochea J V, et al. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett, 2011, 11: 618鈥?23 CrossRef
    32. Chen J, Zhang G, Li B. Impacts of atomistic coating on thermal conductivity of germanium nanowires. Nano Lett, 2012, 12: 2826鈥?832 CrossRef
    33. Wingert M C, Chen Z C Y, Dechaumphai E, et al. Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett, 2011, 11: 5507鈥?513 CrossRef
    34. Moon J, Kim J H, Chen Z C Y, et al. Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. Nano Lett, 2013, 13: 1196鈥?202 CrossRef
    35. Chen H, Xu J, Chen P, et al. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano, 2011, 5: 8383鈥?390 CrossRef
    36. Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B, 1989, 39: 5566鈥?568 CrossRef
    37. Plimpton S J. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys, 1995, 117: 1鈥?9 CrossRef
    38. Nos茅 S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511鈥?19 CrossRef
    39. Park S H, Kim H J, Lee D B, et al. Heterogeneous crystallization of amorphous silicon expedited by external force fields: A molecular dynamics study. Superlatt Microstruct, 2004, 35: 205鈥?15 CrossRef
    40. Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl Phys Lett, 1999, 75: 2056-1鈥? CrossRef
    41. He Y, Galli G. Microscopic origin of the reduced thermal conductivity of silicon nanowire. Phys Rev Lett, 2012, 108: 215901-1鈥?
    42. Hu M, Zhang X, Giapis P, et al. Thermal conductivity reduction in core-shell nanowires. Phys Rev B, 2011, 84: 085442-1鈥?
    43. Markussen T. Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. Nano Lett, 2012, 12: 4698鈥?704 CrossRef
    44. Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65: 144306 CrossRef
    45. Liu X, Zhang G, Pei Q X, et al. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl Phys Lett, 2013, 103: 133113-1鈥?
    46. Zhang G, Zhang Y W. Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Phys Status Solidi RRL, 2013, 7: 754鈥?66 CrossRef
    47. He Y, Donadio D, Galli G. Heat transport in amorphous silicon: Interplay between morphology and disorder. Appl Phys Lett, 2011, 98: 144101-1鈥?
  • 作者单位:XiangJun Liu (1)
    Gang Zhang (1)
    QingXiang Pei (1)
    YongWei Zhang (1)

    1. Institute of High Performance Computing, A*Star, Singapore, 138632, Singapore
  • ISSN:1869-1900
文摘
We perform non-equilibrium molecular dynamics calculations to study the heat transport in crystalline-core amorphous-shell silicon nanowires (SiNWs). It is found that the thermal conductivity of the core-shell SiNWs is closely related to the cross-sectional area ratio of amorphous shell. Through shell amorphization, an 80% reduction in thermal conductivity compared to crystalline SiNWs with the same size can be achieved, due to the non-propagating heat diffusion in the amorphous region. In contrast to the strong temperature-dependent thermal conductivity of crystalline SiNWs, the core-shell SiNWs only show weak temperature dependence. In addition, an empirical relation is proposed to accurately predict the thermal conductivity of the core-shell SiNWs based on the rule of mixture. The present work demonstrates that SiNWs with an amorphized shell are promising candidates for thermoelectric applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700