Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing
详细信息    查看全文
  • 作者:Zhaojun Zhang (7)
    Haibo Jia (8)
    Qian Zhang (7)
    Yang Wan (9)
    Yang Zhou (8)
    Qiong Jia (8)
    Wanguang Zhang (10)
    Weiping Yuan (9)
    Tao Cheng (9)
    Xiaofan Zhu (9)
    Xiangdong Fang (7)
  • 关键词:Zebrafish ; Hematopoiesis ; Rpl11 ; RNA ; Seq ; Transcriptome ; DBA
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:642 KB
  • 参考文献:1. Narla A, Ebert BL: Ribosomopathies: human disorders of ribosome dysfunction. / Blood 2010,115(16):3196-205. CrossRef
    2. Lipton JM, Ellis SR: Diamond Blackfan anemia 2008-009: broadening the scope of ribosome biogenesis disorders. / Curr Opin Pediatr 2010,22(1):12-9. CrossRef
    3. Ganapathi KA, Shimamura A: Ribosomal dysfunction and inherited marrow failure. / Br J Haematol 2008,141(3):376-87. CrossRef
    4. Sieff CA, Yang J, Merida?Long LB, Lodish HF: Pathogenesis of the erythroid failure in Diamond Blackfan anaemia. / Br J Haematol 2010,148(4):611-22. CrossRef
    5. Deisenroth C, Zhang Y: The ribosomal protein-Mdm2-p53 pathway and energy metabolism bridging the Gap between feast and famine. / Genes Cancer 2011,2(4):392-03. CrossRef
    6. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, / et al.: Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. / Blood 2011,117(9):2567-576. CrossRef
    7. Hamaguchi I, Ooka A, Brun A, Richter J, Dahl N, Karlsson S: Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. / Blood 2002,100(8):2724-731. CrossRef
    8. Danilova N, Sakamoto KM, Lin S: Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. / Br J Haematol 2011,152(2):217-28. CrossRef
    9. Duan J, Ba Q, Wang Z, Hao M, Li X, Hu P, Zhang D, Zhang R, Wang H: Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish. / Int J Biochem Cell Biol 2011,43(8):1218-227. CrossRef
    10. Taylor AM, Humphries JM, White RM, Murphey RD, Burns CE, Zon LI: Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. / Exp Hematol 2012,40(3):228-37. CrossRef
    11. Zhang Y, Duc A-CE, Rao S, Sun X-L, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL: Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. / Dev Cell 2013,24(4):411-25. CrossRef
    12. Ball SE, McGuckin CP, Jenkins G, Gordon-Smith EC: Diamond-Blackfan anaemia in the U.K.: analysis of 80 cases from a 20-year birth cohort. / Br J Haematol 1996,94(4):645-53. CrossRef
    13. Lipton JM, Atsidaftos E, Zyskind I, Vlachos A: Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. / Pediatr Blood Cancer 2006,46(5):558-64. CrossRef
    14. Ellis SR, Gleizes PE: Diamond Blackfan anemia: ribosomal proteins going rogue. / Semin Hematol 2011,48(2):89-6. CrossRef
    15. Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L, / et al.: The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update. / Hum Mutat 2010,31(12):1269-279. CrossRef
    16. Da Costa L, Moniz H, Simansour M, Tchernia G, Mohandas N, Leblanc T: Diamond-Blackfan anemia, ribosome and erythropoiesis. / Transfus Clin Biol 2010,17(3):112-19. CrossRef
    17. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, / et al.: Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. / Am J Hum Genet 2008,83(6):769-80. CrossRef
    18. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V, Stary J, Cerna Z, Jabali Y, Pospisilova D: Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond?Blackfan anemia. / Hum Mutat 2009,30(3):321-27. CrossRef
    19. Quarello P, Garelli E, Carando A, Brusco A, Calabrese R, Dufour C, Longoni D, Misuraca A, Vinti L, Aspesi A: Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations. / Haematologica 2010,95(2):206-13. CrossRef
    20. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, Vlachos A, Atsidaftos E, Ball SE, Orfali KA: Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. / Am J Hum Genet 2006,79(6):1110-118. CrossRef
    21. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D: Ribosomal protein S17 gene (RPS17) is mutated in Diamond?Blackfan anemia. / Hum Mutat 2007,28(12):1178-182. CrossRef
    22. Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM, Talbot CC Jr, Meltzer P, Esposito D, Beggs AH: Abnormalities of the large ribosomal subunit protein, Rpl35A, in diamond-blackfan anemia. / Blood 2008,112(5):1582-592. CrossRef
    23. Doherty L, Sheen MR, Vlachos A, Choesmel V, O’donohue MF, Clinton C, Schneider HE, Sieff CA, Newburger PE, Ball SE: Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. / Am J Hum Genet 2010,86(2):222-28. CrossRef
    24. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M: The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. / Nat Genet 1999,21(2):169-75. CrossRef
    25. Moniz H, Gastou M, Leblanc T, Hurtaud C, Crétien A, Lécluse Y, Raslova H, Larghero J, Croisille L, Faubladier M: Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. / Cell Death Dis 2012,3(7):e356. CrossRef
    26. Horos R, Ijspeert H, Pospisilova D, Sendtner R, Andrieu-Soler C, Taskesen E, Nieradka A, Cmejla R, Sendtner M, Touw IP, / et al.: Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. / Blood 2012,119(1):262-72. CrossRef
    27. Storer NY, Zon LI: Zebrafish Models of p53 Functions. / Cold Spring Harb Perspect Biol 2010,2(8):a001123. CrossRef
    28. Jing L, Zon LI: Zebrafish as a model for normal and malignant hematopoiesis. / Dis Model Mech 2011,4(4):433-38. CrossRef
    29. Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K, Kenmochi N: Ribosomal protein gene knockdown causes developmental defects in zebrafish. / PLoS One 2006,1(1):e37. CrossRef
    30. Torihara H, Uechi T, Chakraborty A, Shinya M, Sakai N, Kenmochi N: Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond–Blackfan anaemia. / Br J Haematol 2011,152(5):648-54. CrossRef
    31. Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N: Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. / PLoS One 2009,4(1):e4152. CrossRef
    32. Provost E, Wehner KA, Zhong X, Ashar F, Nguyen E, Green R, Parsons MJ, Leach SD: Ribosomal biogenesis genes play an essential and p53-independent role in zebrafish pancreas development. / Development 2012,139(17):3232-241. CrossRef
    33. Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J: The zebrafish transcriptome during early development. / BMC Dev Biol 2011,11(1):30. CrossRef
    34. Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G: Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. / Genome Res 2011,21(8):1328-338. CrossRef
    35. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. / Nat Methods 2008,5(7):621-28. CrossRef
    36. Nie G, Sheftel AD, Kim SF, Ponka P: Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. / Blood 2005,105(5):2161-167. CrossRef
    37. Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M, Rahmanto YS, Sheftel AD, Ponka P: Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. / Proc Natl Acad Sci U S A 2010,107(24):10775-0782. CrossRef
    38. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schutz G, Beug H: The glucocorticoid receptor is required for stress erythropoiesis. / Genes Dev 1999,13(22):2996-002. CrossRef
    39. Flygare J, Rayon Estrada V, Shin C, Gupta S, Lodish HF: HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. / Blood 2011,117(12):3435-444. CrossRef
    40. Correa PN, Axelrad AA: Production of erythropoietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: role of insulinlike growth factor 1. / Blood 1991,78(11):2823-833.
    41. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D, Orkin SH, Li Z: Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. / Genes Dev 2010,24(15):1659-672. CrossRef
    42. Ratajczak J, Zhang Q, Pertusini E, Wojczyk B, Wasik M, Ratajczak M: The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions: comparison to other cytokines and growth factors. / Leukemia 1998,12(3):371-81. CrossRef
    43. Krstic A, Mojsilovic S, Jovcic G, Bugarski D: The potential of interleukin-17 to mediate hematopoietic response. / Immunol Res 2012,52(1-):34-1. CrossRef
    44. Marks-Bluth J, Pimanda JE: Cell signalling pathways that mediate haematopoietic stem cell specification. / Int J Biochem Cell Biol 2012,44(12):2175-184. CrossRef
    45. Luis TC, Naber BAE, Roozen PPC, Brugman MH, de Haas EFE, Ghazvini M, Fibbe WE, van Dongen JJM, Fodde R, Staal FJT: Canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion. / Cell Stem Cell 2011,9(4):345-56. CrossRef
    46. Ruiz-Herguido C, Guiu J, D’Altri T, Ingles-Esteve J, Dzierzak E, Espinosa L, Bigas A: Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. / J Exp Med 2012,209(8):1457-468. CrossRef
    47. Tran HT, Sekkali B, Van Imschoot G, Janssens S, Vleminckx K: Wnt/β-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. / Proc Natl Acad Sci USA 2010,107(37):16160-6165. CrossRef
    48. Zhang C, Patient R, Liu F: Hematopoietic stem cell development and regulatory signaling in zebrafish. / Biochim Biophys Acta 2012,1830(2):2370-374. CrossRef
    49. Singh KP, Garrett RW, Casado FL, Gasiewicz TA: Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. / Stem Cells Dev 2010,20(5):769-84. CrossRef
    50. Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmid B, / et al.: Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. / Nature 2005,436(7053):1035-039. CrossRef
    51. Bottomley SS, May BK, Cox TC, Cotter PD, Bishop DF: Molecular defects of erythroid 5-aminolevulinate synthase in X-linked sideroblastic anemia. / J Bioenerg Biomembr 1995,27(2):161-68. CrossRef
    52. Roy CN, Weinstein DA, Andrews NC: 2002 E. Mead Johnson award for research in pediatrics lecture: the molecular biology of the anemia of chronic disease: a hypothesis. / Pediatr Res 2003,53(3):507-12. CrossRef
    53. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC: Transferrin receptor is necessary for development of erythrocytes and the nervous system. / Nat Genet 1999,21(4):396-99. CrossRef
    54. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA: Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. / Blood 2005,106(3):1084-091. CrossRef
    55. Ferreira C, Bucchini D, Martin ME, Levi S, Arosio P, Grandchamp B, Beaumont C: Early embryonic lethality of H ferritin gene deletion in mice. / J Biol Chem 2000,275(5):3021-024. CrossRef
    56. Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV, Hentze MW, Beard J, Connor J: Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. / J Neurosci Res 2003,71(1):46-3. CrossRef
    57. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D: Mitoferrin is essential for erythroid iron assimilation. / Nature 2006,440(7080):96-00. CrossRef
    58. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. / Mol Cell Biol 2009,29(4):1007-016. CrossRef
    59. Jeong SY, David S: Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. / J Neurosci 2006,26(38):9810-819. CrossRef
    60. Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI: Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. / Hum Mol Genet 2007,16(16):1905-920. CrossRef
    61. Fleming MD, Campagna DR, Haslett JN, Trenor CC, Andrews NC: A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (f/f) mice. / Genes Dev 2001,15(6):652-57. CrossRef
    62. Cazzola M, Invernizzi R, Bergamaschi G, Levi S, Corsi B, Travaglino E, Rolandi V, Biasiotto G, Drysdale J, Arosio P: Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. / Blood 2003,101(5):1996-000. CrossRef
    63. Antonchuk J, Sauvageau G, Humphries RK: HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. / Cell 2002,109(1):39-5. CrossRef
    64. Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, Calero-Nieto F, Dawson MA, Donaldson IJ, Dumon S, Frampton J: The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. / Blood 2009,113(22):5456-465. CrossRef
    65. Fumagalli S, Thomas G: The role of p53 in ribosomopathies. / Seminars in hematology 2011,48(2):97-05. CrossRef
    66. MacInnes AW, Amsterdam A, Whittaker CA, Hopkins N, Lees JA: Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. / Proc Natl Acad Sci U S A 2008,105(30):10408-0413. CrossRef
    67. Lipton JM, Federman N, Khabbaze Y, Schwartz CL, Hilliard LM, Clark JI, Vlachos A: Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. / J Pediatr Hematol Oncol 2001,23(1):39-4. CrossRef
    68. Ganis JJ, Hsia N, Trompouki E, de Jong JLO, DiBiase A, Lambert JS, Jia ZY, Sabo PJ, Weaver M, Sandstrom R, / et al.: Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. / Dev Biol 2012,366(2):185-94. CrossRef
    69. Chen JJ: Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. / Blood 2007,109(7):2693-699.
    70. Ponka P: Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. / Blood 1997,89(1):1-5.
    71. De Domenico I, Ward DM, Kaplan J: Regulation of iron acquisition and storage: consequences for iron-linked disorders. / Nat Rev Mol Cell Biol 2008,9(1):72-1. CrossRef
    72. Hentze MW, Muckenthaler MU, Andrews NC: Balancing acts: molecular control of mammalian iron metabolism. / Cell 2004,117(3):285-97. CrossRef
    73. Furuyama K, Kaneko K, Vargas VPD: Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. / Tohoku J Exp Med 2007,213(1):1-6. CrossRef
    74. Westerfield M, Doerry E, Douglas S: Zebrafish in the Net. / Trends Genet 1999,15(6):248-49. CrossRef
    75. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. / Dev Dyn 1995,203(3):253-10. CrossRef
    76. Jia Q, Zhang Q, Zhang ZJ, Wang YQ, Zhang WG, Zhou Y, Wan Y, Cheng T, Zhu XF, Fang XD, / et al.: Transcriptome analysis of the zebrafish model of diamond-blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways. / Plos One 2013,8(8):e71782. CrossRef
    77. Hr D, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI: Intraembryonic hematopoietic cell migration during vertebrate development. / Proc Natl Acad Sci U S A 1995,92(23):10713-0717. CrossRef
    78. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. / Nat Biotechnol 2010,28(5):511-15. CrossRef
    79. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq expression estimates by correcting for fragment bias. / Genome Biol 2011,12(3):R22. CrossRef
    80. Jiang H, Wong WH: Statistical inferences for isoform expression in RNA-Seq. / Bioinformatics 2009,25(8):1026-032. CrossRef
    81. Hegde A, Qiu NC, Qiu X, Ho SH, Tay KQ, George J, Ng FS, Govindarajan KR, Gong Z, Mathavan S, / et al.: Genomewide expression analysis in zebrafish mind bomb alleles with pancreas defects of different severity identifies putative Notch responsive genes. / PLoS One 2008,3(1):e1479. CrossRef
  • 作者单位:Zhaojun Zhang (7)
    Haibo Jia (8)
    Qian Zhang (7)
    Yang Wan (9)
    Yang Zhou (8)
    Qiong Jia (8)
    Wanguang Zhang (10)
    Weiping Yuan (9)
    Tao Cheng (9)
    Xiaofan Zhu (9)
    Xiangdong Fang (7)

    7. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
    8. Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
    9. State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
    10. Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
  • ISSN:1471-2164
文摘
Background Diamond–Blackfan anemia is a rare congenital red blood cell dysplasia that develops soon after birth. RPL11 mutations account for approximately 4.8% of human DBA cases with defective hematopoietic phenotypes. However, the mechanisms by which RPL11 regulates hematopoiesis in DBA remain elusive. In this study, we analyzed the transcriptome using deep sequencing data from an Rpl11-deficient zebrafish model to identify Rpl11-mediated hematopoietic failure and investigate the underlying mechanisms. Results We characterized hematological defects in Rpl11-deficient zebrafish embryos by identifying affected hematological genes, hematopoiesis-associated pathways, and regulatory networks. We found that hemoglobin biosynthetic and hematological defects in Rpl11-deficient zebrafish were related to dysregulation of iron metabolism-related genes, including tfa, tfr1b, alas2 and slc25a37, which are involved in heme and hemoglobin biosynthesis. In addition, we found reduced expression of the hematopoietic stem cells (HSC) marker cmyb and HSC transcription factors tal1 and hoxb4a in Rpl11-deficient zebrafish embryos, indicating that the hematopoietic defects may be related to impaired HSC formation, differentiation, and proliferation. However, Rpl11 deficiency did not affect the development of other blood cell lineages such as granulocytes and myelocytes. Conclusion We identified hematopoietic failure of Rpl11-deficient zebrafish embryos using transcriptome deep sequencing and elucidated potential underlying mechanisms. The present analyses demonstrate that Rpl11-deficient zebrafish may serve as a model of DBA and may provide insights into the pathogenesis of mutant RPL11-mediated human DBA disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700