Land-use change caused microbial pollution in a karst underground river, Chongqing, China
详细信息    查看全文
  • 作者:Qiufang He ; Shulan Qiu ; Yongjun Jiang ; Ze Wu ; Ziqi Liu
  • 关键词:Fecal bacteria ; Underground river ; Karst ; Storm event ; Hydrochemical
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:75
  • 期:8
  • 全文大小:2,601 KB
  • 参考文献:Baker TW (2008) Water quality impacts from agricultural land-use in the Karst groundwater basin of Qingmuguan, Chongqing, China. The Research and Creative Activity Database of WKU. p 37. http://​digitalcommons.​wku.​edu/​theses/​37 . Accessed 7 Apr 2015
    Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AK, Stadler H, Burtscher MM, Hornek R, Szewzyk U, Herndl G, Mach RL (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7(8):1248–1259. doi:10.​1111/​j.​1462-2920.​2005.​00810.​x CrossRef
    Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Willey, EnglandCrossRef
    Green RT, Painter SL, Sun A, Worthington S (2006) Groundwater contamination in karst terranes. Water Air Soil Pollut Focus 6(1–2):157–170CrossRef
    Gutiérrez F, Pariseb M, Waele JD, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88. doi:10.​1016/​j.​earscirev.​2014.​08.​002 CrossRef
    He QF, Yang PH, Yuan WH, Jiang YJ, Pu JB, Yuan DX, Kuang YL (2010) The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China. Hydrogeol J 18(5):1281–1289. doi:10.​1007/​s10040-010-0594-0 CrossRef
    Heinz B, Birk S, Liedl R, Geyer T, Straub KL, Andresen J, Bester K, Kappler A (2009) Water quality deterioration at a karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination. Environ Geol 57(4):797–808. doi:10.​1007/​s00254-008-1359-0 CrossRef
    Kelly WR, Panno SV, Hackley KC, Hackley KC, Martinsek AT, Krapac IG, Weibel CP, Storment EC (2009) Bacteria contamination of groundwater in a mixed land-use karst region. Water Qual Expo Health 1:69–78. doi:10.​1007/​s12403-009-0006-7 CrossRef
    Kuang YL (2009) Karst watershed storm response of metal cations in an underground river, Qingmu Guan, Chongqing. Master thesis. Southwest University, China
    Laroche E, Petit F, Fournier M, Barbara R (2010) Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply. J Hydrol 392(1–2):12–21. doi:10.​1016/​j.​jhydrol.​2010.​07.​022 CrossRef
    Mahler B, Massei N (2007) Anthropogenic contaminants as tracers in an urbanizing karst aquifer. J Contam Hydrol 9:81–106. doi:10.​1016/​j.​jconhyd.​2006.​08.​010 CrossRef
    Murphy S, Jordan P, Mellander PE, Flaherty VO (2015) Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments. Sci Total Environ 520:286–299. doi:10.​1016/​j.​scitotenv.​2015.​02.​017 CrossRef
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifried genes coding for 16S rDNA. Appl Environ Microbiol 59(3):695–700 (doi:0099-2240/93/030695-06$02.00/0)
    Nguyet VTM, Goldscheider N (2006) Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietanm. Hydrogeol J 14(7):1147–1159. doi:10.​1007/​s10040-006-0038-z CrossRef
    Ovreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63(9):3367–3373 (doi:0099-2240/$04.00+0)
    Pu JB, Yuan DX, Hu ZY, Yang PH, Gou PF, He QF, Wang ZJ (2011) High-resolution research on the NO3 − changes of karst groundwater and its responses to the outside environmental variations. Environ Sci 32(3):680–686. doi:10.​13227/​j.​hjkx.​2011.​03.​009
    Ravbar R, Sebela S (2015) The effectiveness of protection policies and legislative framework with special regard to karst landscapes: insights from Slovenia. Environ Sci Policy 51:106–116. doi:10.​1016/​j.​envsci.​2015.​02.​013 CrossRef
    Rizzo L, Manai C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Kassinos FD (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. doi:10.​1016/​j.​scitotenv.​2013.​01.​032 CrossRef
    Standard for Drinking Water Quality (edn) (2007) GB 5749-2006. Edited and published by Standardization Administration of China and Health Department of China. Department of Health and China, Beijing, p 10
    Vanderhoff SM (2011) Multiple storm event impacts on epikarst storage and transport of organic soil amendments in south-central Kentucky. The Research and Creative Activity Database of WKU. Paper 1128. http://​digitalcommons.​wku.​edu/​theses/​1128 . Published in Dec 2011
    Wang YH (2007) Distribution and transportation dynamics of persistent organic pollutants in karst cavity. PhD Thesis. China University of Geosceinces, Wuhan, China
    Wang YX (2007b) Groundwater pollution and restoration. Higher Education Press, Beijing
    WHO (2011) Guidelines for drinking-water quality, 4rd edn. World Health Organization. http://​www.​who.​int/​water_​sanitation_​health/​publications/​2011/​dwq_​guidelines/​en/​index.​html
    Yang PH (2010) The hydrogeochemical characteristics and transportation of suspended particle matters in Qingmuguan underground river system, Chongqing, China. PhD thesis. Southwest University, China
    Yang M, Pu J, Zhang J, Hu Z (2009) A preliminary study of OCPs in underground river surface sediments from Chongqing typical karst areas. Carsologica Sinica 3(7):1339–1343 1004-4810(2009) 02-0144-05
    Yang PH, Yuan DX, Yuan WH, Kuang YL, Jia P, He QF (2010) Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chin Sci Bull 55(3):1–10. doi:10.​1007/​s11434-010-0083-9 CrossRef
    Yuan DX, Zhu DH, Weng JT (1994) Chinese karstology. Geologic Press, China
    Zhang JQ, Qi SH, Xing X, Tan L, Zhang J, Hu Y, Song Q (2011) Distribution characteristics of organochlorine pesticides in bank soil samples and estuarial sediment core of the Minjiang River, Southeast China. Environ Sci 32(3):673–679. doi:10.​13227/​j.​hjkx.​2011.​03.​043
    Zhang Y, Kelly WR, Panno SV, Liu WT (2014) Tracing fecal pollution sources in karst groundwater by bacteriodales genetic biomarkers, bacterial indicators and environmental variables. Sci Total Environ 490:1082–1090. doi:10.​1016/​j.​scitotenv.​2014.​05.​086 CrossRef
  • 作者单位:Qiufang He (1) (2)
    Shulan Qiu (1)
    Yongjun Jiang (1)
    Ze Wu (1)
    Ziqi Liu (1)

    1. Key Laboratory of Eco-environments in Three Gorges Reservoir (Ministry of Education), School of Geographical Science, Southwest University, Chongqing, 400715, China
    2. Karst Dynamics Laboratory, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The Qingmuguan underground river of the Qingmuguan karst valley was used as a source of local drinking water until 2010. However, it was abandoned in 2011 due to pollution caused by a new horse farm. Horse feces polluted sub-surface water, especially after storm events, causing a bad odor and discoloration. In this study, data on hydrochemical and microbial variables, including water discharge and fecal bacteria, from a May 2011 storm event are analyzed. The results of these hydrochemical and microbial analyses show that different recharge sources were responsible for different contamination substances, occurring in three stages: (I) small quantities of recharge water near the outlet meant only minor increases in the river discharge and in the hydrochemical variables, but a large increase in bacterial numbers. (II) Large quantities of surface water recharged the underground river through sinkholes, causing an increase in discharge and significant contamination of the river water by sewage and soil erosion. With the exception of fecal coliform, PO4 3−, and dissolved oxygen, soil erosion was responsible for variations in most variables. (III) At the end of the storm event, recharge from sinkholes was reduced, but water seepage from soil and fissures, which were contaminated by horse feces and fecal bacteria, led to a significant increase in the fecal bacteria and other variables related to fecal pollution in the river water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700