Hydrochemical and isotopic study of groundwater in the Yinchuan plain, China
详细信息    查看全文
  • 作者:Lingfen Wang (1) (2)
    Fusheng Hu (1)
    Lihe Yin (3)
    Li Wan (1)
    Qiusheng Yu (4)
  • 关键词:Hydrochemistry ; Isotopic ; Quaternary ; Groundwater flow system
  • 刊名:Environmental Earth Sciences
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:69
  • 期:6
  • 页码:2037-2057
  • 全文大小:1330KB
  • 参考文献:1. Acheampong SY, Hess JW (1998) Hydrogeologic and Hydrochemical Framework of the Shallow Groundwater System in the Southern Voltaian Sedimentary Basin, Ghana. Hydrogeol J 6:527-37 CrossRef
    2. Allison GB (1983) The distribution of deuterium and 18O in dry soils, Experiment. J Hydrol 64:377-97 CrossRef
    3. Cook PG, Herczeg AL (1998) Groundwater chemical methods for recharge studies. Collingwood, Australia
    4. Craig M, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36(1):121 CrossRef
    5. Doney SC, Glover DM, Jenkins WJ (1992) A model function of the global bomb tritium distribution in precipitation, 1960-986. J Geophys Res 97:5481-492 CrossRef
    6. Eckardt FD, Bryant RG, McCulloch G, Spiro B, Wood WW (2008) The hydrochemistry of a semi-arid pan basin case study: Sua Pan, Makgadikgadi, Botswana. Appl Geochem 23:1563-580 CrossRef
    7. Edmunds WM (2009) Geochemistry’s vital contribution to solving water resource problems. Appl Geochem 24:1058-073 CrossRef
    8. Eichinger L (1980) Experience gathered in low-level measurement of 3H in water. In: Low-level 3H measurement, IAEA, Vienna, pp 43-4
    9. Fontes JC (1983) Dating of groundwater. In: Guidebook on nuclear techniques in hydrology (Technical Report, Series no 91), IAEA,Vienna
    10. Fritz P, Fontes JC (1980) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam
    11. Fryar AE, Mullican WF (2001) Groundwater recharge and chemical evolution in the southern high plains of texas, USA. Hydrogeol J 9:522-42 CrossRef
    12. Garcia MG, del Margarita V, Hidalgo Miguel AB (2001) Geochemistry of groundwater in the Alluvial Plain of Tucuman Province, Argentina. Hydrogeol J 9:597-10 CrossRef
    13. Han DM, Liang X, Jin MG, Currell MJ, Han Y, Song XF (2009) Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environ Manage 44:243-55 CrossRef
    14. Hem JD (1989) Study and interpretation of the chemical characteristics of natural water (3rd edn) US Geological Survey of Water Supply, Paper 2254. USGS, Washington, DC
    15. LaBolle EM, Fogg GE, Eweis JB (2006) Diffusive fractionation of 3H and 3He in groundwater and its impact on groundwater age estimates. WRR 42:W07202
    16. Le Gal La Salle C, Marlin C, Leduc C (2001) Renewal rate estimation of groundwater based on radioactive tracers (3H, 14C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. Journal of Hydrology 254:145-56 CrossRef
    17. Leduc C, Taupin GD, Le Gal La Salle C (1996) Estimation de la recharge de la nappe phreatique du Continental Terminal (Niamey, Niger) a partir des teneurs en tritium. C.R. Sci. Paris 323:599-05
    18. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evolution of the half-life of tritium. J Res Natl Inst Stand Techno 105(4):541-49 CrossRef
    19. Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of groundwater resources and their changes under the impacts of human activity in the arid Northwest China—a case study of the Shiyang River Basin. J Arid Environ 61:277-95 CrossRef
    20. Maloszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology. IAEA, Vienna, pp 9-8
    21. Saha D, Sarangam SS, Dwivedi SN, Bhartariya KG (2010) Evaluation of hydrogeochemical processes in arsenic-contaminated alluvial aquifers in parts of Mid-Ganga Basin, Bihar, eastern India. Environ Earth Sci 61:799-11 CrossRef
    22. Shen ZL (1993) The basis of hydrogeochemistry. Geological Publishing House, Beijing
    23. Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15-7 CrossRef
    24. Su YH, Zhu GF, Feng Q, Li ZZ, Zhang FP (2009) Environmental isotopic and hydrochemical study of groundwater in the Ejina Basin, northwest China. Environ Geol 58:601-14 CrossRef
    25. Sun YQ, Qian H, Zhang L, Zhang Q (2006) The groundwater chemistry characteristics of Yinchuan Region. Agricultural Research in the Arid Areas 24:185-89 (in Chinese)
    26. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basin. J Geophys Res 67(11):4375-385 CrossRef
    27. Tóth J, Corbet T (1986) Post-Paleocene evolution of regional groundwater flow-systems and their relation to petroleum accumulations, Taber area, southern Alberta, Canada. Canadian Petroleum Geology Bulletin 34(3):339-63
    28. Uphori DU, Toth J (1989) Pattern of groundwater chemistry, Ross creek Benin, Alberta, Canada. Groundwater 27:20-6 CrossRef
    29. Wang DC, Zhang RQ, Shi YH (1995) The basis of hydrogeology. Geological Publishing House, Beijing
    30. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system, California, USA. WRR 38:1198-211 CrossRef
    31. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28-5 CrossRef
    32. Yin LH, Hou GC, Tao ZP, Li Y (2010) Origin and recharge estimates of groundwater in the ordos plateau, People’s Republic of China. Environ Earth Sci 60(8):1731-738 CrossRef
    33. Yin LH, Hou GC, Dou Y, Tao ZP, Li Y (2011a) Hydrogeochemical and isotopic study of groundwater in the Habor Lake Basin of the Ordos Plateau, NW China. Environ Earth Sci 64(6):1575-584 CrossRef
    34. Yin LH, Hou GC, Su XS, Wang D, Dong JQ, Hao YH, Wang XY (2011b) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429-43 CrossRef
    35. Yu YQ (2005) The groundwater recharge patterns in the Yinchuan plain, China. Doctoral Dissertation, China university of geosciences, Beijing (in Chinese)
    36. Yurtsever Y (1983) Models for tracer data analysis. In: Guidebook on nuclear techniques in hydrology. Technical Report, Series no 91. IAEA, Vienna
    37. Zuhair K (2001) Use of hydrochemistry and environmental isotopes for evaluation of groundwater in the Paleogene limestone aquifer of the Ras Al–Ain area (Syrian Jezireh). Environ Geol 41:128-44 CrossRef
  • 作者单位:Lingfen Wang (1) (2)
    Fusheng Hu (1)
    Lihe Yin (3)
    Li Wan (1)
    Qiusheng Yu (4)

    1. School of Water Resources and Environment, China University of Geosciences (Beijing), Xueyuan Road 29, 100083, Beijing, China
    2. BGI Engineering Consultants Ltd., YangFangdian Road 15, 100038, Beijing, China
    3. Xi’an Geology Investigation Institute, Xi’an, Shanxi, China
    4. Ningxia Institute of Geo-engineering and Reconnaissance, Yinchuan, Ningxia, China
文摘
The Yinchuan plain is located in the arid climate zone of NW China. The western margin of the plain is the Helan mountain connecting a series of normal slip faults. The eastern margin of the plain connects with the Yellow River and adjacents with the Ordos platform. The south of the plain is bordered by the EN fault of the Niushou mountain. The bottom of the plain is the Carboniferous, Permian, or Ordovician rocks. Based on the analysis of groundwater hydrochemical and isotopic indicators, this study aims to identify the groundwater recharge and discharge in the Yinchuan plain, China. The hydrochemical types of the groundwater are HCO3–SO4 in the west, HCO3–Cl in the middle, and Cl–SO4 in the east. The hydrochemical types are HCO3–SO4 in the south, HCO3–Cl and SO4–HCO3 in the middle. The hydrochemical types are complex in the north, mainly SO4–HCO3 and Cl–SO4. Deuterium, 18O, and tritium values of groundwater indicate that groundwater recharge sources include precipitation, bedrock fissure water, and irrigation return water. Groundwater discharges include evaporation, abstraction, and discharge to surface water. According to the EW isotopic profile, the groundwater flow system (GFS) in the Yinchuan plain can be divided into local flow systems (LFS) and regional flow systems (RFS). Groundwater has lower TDS and higher tritium in the southern Yellow River alluvial plain and groundwater age ranges from 6 to 25?years. The range of groundwater renewal rates is from 11 to 15?% a?. The depth of the water cycle is small, and groundwater circulates fast and has high renewal rates. Groundwater has higher TDS and lower tritium in the northern Yellow River alluvial plain. The range of groundwater age is from 45 to 57?years, and renewal rate is from 6 to 0.1?% a?. The depth of the water cycle is larger. Groundwater circulates slowly and has low renewal rates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700