Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model
详细信息    查看全文
  • 作者:Kun Liu ; Qiying Chen ; Jian Sun
  • 关键词:GRAPES model ; cumulus parameterization ; boundary layer diffusion ; mass flux
  • 刊名:Acta Meteorologica Sinica
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:29
  • 期:5
  • 页码:806-822
  • 全文大小:5,429 KB
  • 参考文献:Acker, J. G., and G. Leptoukh, 2007: Online analysis enhances use of NASA earth science data. Eos. Trans. Amer. Geophys. Union, 88, 14-7.CrossRef
    Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-01.CrossRef
    Bechtold, P., M. Khler, T. Jung, et al., 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal timescales. Quart. J. Roy. Meteor. Soc., 134, 1337-351.CrossRef
    Chen Dehui, Xue Jishan, Yang Xuesheng, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chin. Sci. Bull., 53, 3433-445.CrossRef
    Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013-023.CrossRef
    Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131-47.CrossRef
    Deng Hua, Xue Jishan, Xu Haiming, et al., 2008: Study of different cumulus parameterization schemes of GRAPES-Meso model in simulation of convection provocation. J. Trop. Meteor., 24, 327-34. (in Chinese)
    Grant, A. L., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125, 1913-936.CrossRef
    Grant, A. L. M., 2001: Cloud-base fluxes in the cumuluscapped boundary layer. Quart. J. Roy. Meteor. Soc., 127, 407-21.CrossRef
    Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520-33.CrossRef
    Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-339.CrossRef
    Hong, S. -Y., and J. -O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-51.
    Kain, J. S., and J. M. Fritsh, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-802.CrossRef
    Kim, Y. -J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52, 1875-902.CrossRef
    Kummerow, C., W. Barnes, T. Kozu, et al., 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol., 15, 809-17.CrossRef
    Li Lijuan and Wang Bin, 2010: Influence of two different convection schemes on the radiative energy budget in GAMIL1.0. Acta Meteor. Sinica, 24, 318-27.
    Liu Kun, Liu Yimin, and Wu Guoxiong, 2010: The impacts of the modified Tiedtke cumulus convective parameterization scheme on the tropical rainfall simulation in SAMIL model. Chinese J. Atmos. Sci., 34, 163-74. (in Chinese)
    Liu Yiming and Ding Yihui, 2002: Modified mass flux cumulus convective parameterization scheme and its simulation experiment. Part I: Mass flux scheme and its simulation of the 1991 flood event. Acta Meteor. Sinica, 16, 37-9.
    Lock, A. P., A. R. Brown, M. R. Bush, et al., 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-199.CrossRef
    Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101-27.CrossRef
    MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47, 1012-030.CrossRef
    Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-6682.CrossRef
    Moeng, C. H., P. P. Sunllivan, and B. Stevens, 1999: Including radiative effects in an entrainment rate formula for buoyancy-driven PBLs. J. Atmos. Sci., 56, 1031-049.CrossRef
    Nie, J., and Z. M. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 1936-956.CrossRef
    Pan, H. -L., and W. -S. Wu, 1995: Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note 409, Washington, DC, 1-0.
    Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47, 338-56.CrossRef
    Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125-30.CrossRef
    Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650-66.CrossRef
    Siebesma, A. P., C. S. Bretherton, A. Brown, et al., 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci.
  • 作者单位:Kun Liu (1) (2)
    Qiying Chen (1) (2)
    Jian Sun (1) (2)

    1. National Meteorological Center, China Meteorological Administration, Beijing, 100081, China
    2. Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air Quality Control/Air Pollution;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2191-4788
文摘
Cumulus convection is a key linkage between hydrological cycle and large-scale atmospheric circulation. Cumulus parameterization scheme is an important component in numerical weather and climate modeling studies. In the Global/Regional Assimilation and Prediction Enhanced System (GRAPES), turbulent mixing and diffusion approach is applied in its shallow convection scheme. This method overestimates the vertical transport of heat and moisture fluxes but underestimates cloud water mixing ratio over the region of stratocumulus clouds. As a result, the simulated low stratocumulus clouds are less than observations. To overcome this problem, a mass flux method is employed in the shallow convection scheme to replace the original one. Meanwhile, the deep convection scheme is adjusted correspondingly. This modification is similar to that in the US NCEP Global Forecast System (GFS), which uses the simplified Arakawa Schubert Scheme (SAS). The planetary boundary layer scheme (PBL) is also revised by considering the coupling between the PBL and stratocumulus clouds. With the modification of both the cumulus and PBL schemes, the GRAPES simulation of shallow convective heating rate becomes more reasonable; total amounts of stratocumulus clouds simulated over the eastern Pacific and their vertical structure are more consistent with observations; the underestimation of stratocumulus clouds simulated by original schemes is less severe with the revised schemes. Precipitation distribution in the tropics becomes more reasonable and spurious precipitation is effectively suppressed. The westward extension and northward movement of the western Pacific subtropical high simulated with the revised schemes are more consistent with Final Operational Global Analysis (FNL) than that simulated with the original schemes. The statistical scores for the global GRAPES forecast are generally improved with the revised schemes, especially for the simulation of geopotential height in the Northern Hemisphere and winds in the tropics. Root mean square errors (RMSEs) decrease in the lower and upper troposphere with the revised schemes. The above results indicate that with the revised cumulus and PBL schemes, model biases in the tropics decrease and the global GRAPES performance is greatly improved. Key words GRAPES model cumulus parameterization boundary layer diffusion mass flux

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700