On the distribution function of the geomagnetic field intensity according to the model of a giant Gaussian process and empirical data
详细信息    查看全文
  • 作者:V. P. Shcherbakov ; A. V. Khokhlov ; N. K. Sycheva
  • 刊名:Izvestiya, Physics of the Solid Earth
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:51
  • 期:5
  • 页码:786-799
  • 全文大小:1,873 KB
  • 参考文献:Barbetti, M. and McElhinny, M.W., The Lake Mungo geomagnetic excursion, Phil. Trans. R. Soc. London, 1976, vol. 281, pp. 515-42.CrossRef
    Brassart, J., Tric, E., Valet, J.P., and Herrero-Bervera, E., Absolute paleointensity between 60 and 400 ka from the Kohala Mountain (Hawaii), Earth Planet. Sci. Lett., 1997, vol. 148, pp. 141-56.CrossRef
    Carlut, J. and Quidelleur, X., Absolute paleointensities recorded during the Brunhes Chron at La Guadeloupe Island, Phys. Earth Planet. Inter., 2000, vol. 120, pp. 255-69.CrossRef
    Coe, R.S., Gromme, C.S., and Mankinen, E.A., Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 1978, vol. 83, pp. 1740-756.CrossRef
    Constable, C.G. and Parker, R.L., Statistics of the geomagnetic secular variation for the past 5 m.y, J. Geophys. Res., 1988, vol. 93, no. B10, pp. 11569-1581.CrossRef
    Constable, C.G. and Johnson, C.L., Anisotropic paleosecular variation models: implications for geomagnetic field observables, Earth Planet. Sci. Lett., 1999, vol. 115, pp. 35-1.CrossRef
    Draeger, U., Prevot, M., Poidras, T., and Riisager, J., Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geophys. J. Int., 2006, vol. 166, pp. 12-2.CrossRef
    Gee, J.S., Cande, S.C., Hildebrand, J.A., Donnelly, K., and Parker, R., Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies, Nature, 2000, vol. 408, pp. 827-32.CrossRef
    Johnson, C. and Constable, C., Paleosecular variation recorded by lava flows over the last 5 Myr, Phil. Trans. R. Soc. Lond., 1996, vol. 354, pp. 89-41.CrossRef
    Khokhlov, A., Hulot, G., and Carlut, J., Towards a selfconsistent approach to palaeomagnetic field modeling, Geophys. J. Int., 2001, vol. 145, pp. 157-71.CrossRef
    Khokhlov, A., Hulot, G., and Bouligand, C., Testing statistical palaeomagnetic field models against directional data affected by measurement errors, Geophys. J. Int., 2006, vol. 167, no. 2, pp. 635-48. doi 10.1111/j.1365246X.2006.03133.xCrossRef
    Khokhlov, A., The model of the paleomagnetic secular variations: theory and implementation, Geofiz. Issled., 2012, vol. 13, no. 2, pp. 50-1.
    Khokhlov, A. and Hulot, G., Probability uniformization and application to statistical palaeomagnetic field models and directional data, Geophys. J. Int., 2013, vol. 193, no. 1, pp. 110-21. doi 10.1093/gji/ggs118CrossRef
    Kissel, C., Guillou, H., Laj, C., Carracedo, J.C., Nomade, S., Perez-Torrado, F., and Wandres, C., The Mono Lake excursion recorded in phonolitic lavas from Tenerife (Canary Islands): paleomagnetic analyses and coupled K/Ar and Ar/Ar dating, Phys. Earth Planet. Inter., 2011, vol. 187, pp. 232-44.CrossRef
    Laj, C., Rais, A., Surmont, J., Gillot, P.Y., Guillou, H., Kissel, C., and Zanella, E., Changes of the geomagnetic field vector obtained from lava sequences on the island of Vulcano (Aeolian Islands, Sicily), Phys. Earth Planet. Inter., 1997, vol. 99, pp. 161-77.CrossRef
    Laj, C. and Kissel, C., Geomagnetic field intensity at Hawaii for the last 420 kyrs from the Havaii scientific drilling project core, Big Island, Hawaii, J. Geophys. Res., 1999, vol. 104, pp. 15317-5338.CrossRef
    Laj, C., Kissel, K., Scao, V., Beer, J., Thomas, D.M., Guillou, H., Muscheler, R., and Wagner, G., Geomagnetic intensity and inclination variations at Hawaii for the past 98 kyr from core SOH-4 (Big Island): a new study and a comparison with existing contemporary data, Phys. Earth Planet. Inter., 2002, vol. 129, pp. 205-43.CrossRef
    Laj, C., Kissel, C., Davies, C., and Gubbins, D., Geomagnertic field intensity and inclination records from Hawaii and the Reunion Island: geomagnetic implications, Phys. Earth Planet. Inter., 2011, vol. 187, pp. 170-87.CrossRef
    Lawrence, KP., Tauxe, L., Staudigel, H., Constable, C.G., Koppers, A., McIntosh, W., and Johnson, C.L., Paleomagnetic field properties at high southern latitude, Geochem., Geophys., Geosyst., 2009, vol. 10, pp. 1-7.CrossRef
    Love, J.J. and Constable, C.G., Gaussian statistics for palaeomagnetic vectors, Geophys. J. Int., 2003, vol. 152, pp. 515-65.CrossRef
    McFadden, P.L., Merrill, R.T., and McElhinny, M.W., Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 1988, vol. 93, no. B10, pp. 11583-1588.CrossRef
    Merrill, R.T. and McFadden, P.L. Geomagnetic field stability: reversal events and excursions, Earth Planet. Sci. Lett., 1994. vol. 121, pp.57-9.CrossRef
    Merrill, R.T., McElhinny, M.W., and McFadden, P.L., The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, San Diego: Academic, 1996. International Geophysics Series, vol. 63.
    Le Mou?l, J.L., Shebalin, P., and Khokhlov, A., Earth magnetic field modeling from Oersted and CHAMP data, Earth Planets Space, 2010, vol. 62, no. 3, pp. 277-86. doi 10.5047/eps.2009.11.003CrossRef
    Quide
  • 作者单位:V. P. Shcherbakov (1) (2)
    A. V. Khokhlov (3)
    N. K. Sycheva (1)

    1. Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Borok, 152742, Russia
    2. Kazan Federal University, ul. Kremlyovskaya 18, Kazan, Republic of Tatarstan, 420008, Russia
    3. Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russia
  • 刊物主题:Geophysics/Geodesy;
  • 出版者:Springer US
  • ISSN:1555-6506
文摘
The quadrature formula is obtained for the distribution function (DF) of the intensity of the geomagnetic field B and the corresponding virtual axial dipole moment VADM in the model of the Giant Gaussian Process (GGP). The predictions of this model are compared, up to a high degree of detail, with the empirical data for the Brunhes Epoch, which are contained in the global databases (GDB) for paleointensity. With a fixed latitude φ, the DFs f B (B, φ) and f VADM(VADM, φ) are close to Gaussian within the first approximation. At the same time, the global DF f B (B) has a high coefficient of asymmetry a = 0.35 since the mean of this function is latitude-dependent. In contrast, the global DF f VADM(VADM) has far lower asymmetry a = 0.16, since its mean barely varies with latitude. The comparison between the distribution histograms of VADM according to the PINT GDB data for the Brunhes Epoch and the results calculated by the BGP model shows that the empirical data and the calculations by the GGP model noticeably differ in the interval of the small VADM. Specifically, the histogram based on PINT GDB data shows a significant predominance of these data compared to the model predictions. At the same time, the same data fairly well agree with the GGP model in directions. This contradiction is probably accounted for by the underestimation of the paleointensity values in the experiments by the Thellier method if the rock carries chemical magnetization instead of thermal remanent magnetization. An alternative explanation suggests a short drop in the geomagnetic dynamo power associated with a simultaneous decrease in both the mean value of the axial dipole and in the variances of all the other terms of the spherical expansion of the geomagnetic field (i.e., quadrupole, octupole, and other components). Original Russian Text ? V.P. Shcherbakov, A.V. Khokhlov, N.K. Sycheva, 2015, published in Fizika Zemli, 2015, No. 5, pp. 179-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700