Double-Sided Transparent TiOlus-plus">2 Nanotube/ITO Electrodes for Efficient CdS/CuInSlus-plus">2 Quantum Dot-Sensitized Solar Cells
详细信息    查看全文
  • 作者:Chong Chen ; Lanyu Ling ; Fumin Li
  • 刊名:Nanoscale Research Letters
  • 出版年:2017
  • 出版时间:December 2017
  • 年:2017
  • 卷:12
  • 期:1
  • 全文大小:1777KB
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
  • 卷排序:12
文摘
In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700