Detection of internal exon deletion with exon Del
详细信息    查看全文
  • 作者:Yan Guo (29)
    Shilin Zhao (29)
    Brian D Lehmann (30)
    Quanhu Sheng (29)
    Timothy M Shaver (29)
    Thomas P Stricker (31)
    Jennifer A Pietenpol (30)
    Yu Shyr (29)

    29. Vanderbilt Ingram Cancer Center
    ; Center for Quantitative Sciences ; 2220 Pierce Ave ; 549 Preston Research Building ; Nashville ; TN ; 37232 ; USA
    30. Department of Biochemistry
    ; Vanderbilt University ; Nashville ; TN ; 37232 ; USA
    31. Department of Pathology
    ; Vanderbilt University ; Nashville ; TN ; 37232 ; USA
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:767 KB
  • 参考文献:1. Guo, Y, Li, J, Li, CI, Shyr, Y, Samuels, DC (2013) MitoSeek: extracting mitochondria information and performing high throughput mitochondria sequencing analysis. Bioinformatics 29: pp. 1210-1211 CrossRef
    2. Samuels, DC, Han, L, Li, J, Quanghu, S, Clark, TA, Shyr, Y, Guo, Y (2013) Finding the lost treasures in exome sequencing data. Trends Genet 29: pp. 593-599 CrossRef
    3. Harding, PL, Fall, AM, Honeyman, K, Fletcher, S, Wilton, SD (2007) The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 15: pp. 157-166 CrossRef
    4. Ashworth, TD, Pear, WS, Chiang, MY, Blacklow, SC, Mastio, J, Xu, L, Kelliher, M, Kastner, P, Chan, S, Aster, JC (2010) Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG recombinase and a conserved internal translational start site in Notch1. Blood 116: pp. 5455-5464 CrossRef
    5. Robinson, DR, Kalyana-Sundaram, S, Wu, YM, Shankar, S, Cao, X, Ateeq, B, Asangani, IA, Iyer, M, Maher, CA, Grasso, CS, Lonigro, RJ, Quist, M, Siddiqui, J, Mehra, R, Jing, X, Giordano, TJ, Sabel, MS, Kleer, CG, Palanisamy, N, Natrajan, R, Lambros, MB, Reis-Filho, JS, Kumar-Sinha, C, Chinnaiyan, AM (2011) Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 17: pp. 1646-1651 CrossRef
    6. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: pp. 2078-2079 CrossRef
    7. Bentley, DR, Balasubramanian, S, Swerdlow, HP, Smith, GP, Milton, J, Brown, CG, Hall, KP, Evers, DJ, Barnes, CL, Bignell, HR, Boutell, JM, Bryant, J, Carter, RJ, Keira Cheetham, R, Cox, AJ, Ellis, DJ, Flatbush, MR, Gormley, NA, Humphray, SJ, Irving, LJ, Karbelashvili, MS, Kirk, SM, Li, H, Liu, X, Maisinger, KS, Murray, LJ, Obradovic, B, Ost, T, Parkinson, ML, Pratt, MR (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: pp. 53-59 CrossRef
    8. Yoon, S, Xuan, Z, Makarov, V, Ye, K, Sebat, J (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res 19: pp. 1586-1592 CrossRef
    9. Langmead, B, Salzberg, SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: pp. 357-359 CrossRef
    10. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 CrossRef
    11. Sathirapongsasuti, JF, Lee, H, Horst, BA, Brunner, G, Cochran, AJ, Binder, S, Quackenbush, J, Nelson, SF (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27: pp. 2648-2654 CrossRef
    12. Abyzov, A, Urban, AE, Snyder, M, Gerstein, M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21: pp. 974-984 CrossRef
    13. Krumm, N, Sudmant, PH, Ko, A, O'Roak, BJ, Malig, M, Coe, BP, Quinlan, AR, Nickerson, DA, Eichler, EE (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22: pp. 1525-1532 CrossRef
    14. Boeva, V, Popova, T, Bleakley, K, Chiche, P, Cappo, J, Schleiermacher, G, Janoueix-Lerosey, I, Delattre, O, Barillot, E (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28: pp. 423-425 CrossRef
    15. Love, MI, Mysickova, A, Sun, R, Kalscheuer, V, Vingron, M, Haas, SA (2011) Modeling read counts for CNV detection in exome sequencing data. Stat Appl Genet Mol Biol 10: pp. 1
    16. Klambauer, G, Schwarzbauer, K, Mayr, A, Clevert, DA, Mitterecker, A, Bodenhofer, U, Hochreiter, S (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40: pp. e69 CrossRef
    17. Guo, Y, Sheng, Q, Samuels, DC, Lehmann, B, Bauer, JA, Pietenpol, J, Shyr, Y (2013) Comparative study of exome copy number variation estimation tools using array comparative genomic hybridization as control. Biomed Res Int 2013: pp. 915636
    18. Guo, Y, Long, J, He, J, Li, CI, Cai, Q, Shu, XO, Zheng, W, Li, C (2012) Exome sequencing generates high quality data in non-target regions. BMC Genomics 13: pp. 194 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Exome sequencing allows researchers to study the human genome in unprecedented detail. Among the many types of variants detectable through exome sequencing, one of the most over looked types of mutation is internal deletion of exons. Internal exon deletions are the absence of consecutive exons in a gene. Such deletions have potentially significant biological meaning, and they are often too short to be considered copy number variation. Therefore, to the need for efficient detection of such deletions using exome sequencing data exists. Results We present ExonDel, a tool specially designed to detect homozygous exon deletions efficiently. We tested ExonDel on exome sequencing data generated from 16 breast cancer cell lines and identified both novel and known IEDs. Subsequently, we verified our findings using RNAseq and PCR technologies. Further comparisons with multiple sequencing-based CNV tools showed that ExonDel is capable of detecting unique IEDs not found by other CNV tools. Conclusions ExonDel is an efficient way to screen for novel and known IEDs using exome sequencing data. ExonDel and its source code can be downloaded freely at https://github.com/slzhao/ExonDel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700