Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)
详细信息    查看全文
  • 作者:Benjamin Beach ; Dustin Sauriol ; Pedro Derosa
  • 关键词:Carborane cages ; molecular electronics ; spintronics ; magnetic materials ; DFT ; NEGF
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:4
  • 页码:2150-2159
  • 全文大小:3,169 KB
  • 参考文献:1.B. Fabre, E. Hao, Z.M. Lejeune, E.K. Amuhaya, F. Barriére, J.C. Garno, M.G.H. Vicente, and A.C.S. Appl, Mater. Interfaces 2, 691 (2010).CrossRef
    2.E. Hao, B. Fabre, F.R. Fronczek, and M.G.H. Vicente, Chem. Mater. 19, 6195 (2007).CrossRef
    3.E. Hao, B. Fabre, F.R. Fronczek, and M.G.H. Vicente, Chem. Commun. (Camb.) 2007, 4387 (2007).CrossRef
    4.A.M. Spokoyny, T.C. Li, O.K. Farha, C.W. Machan, C. She, C.L. Stern, T.J. Marks, J.T. Hupp, and C.A. Mirkin, Angew. Chem. Int. Ed. 49, 5339 (2010).CrossRef
    5.T. Zhang, L. Zhu, Z. Tian, and J. Wang, J. Phys. Chem. C 115, 14542 (2011).CrossRef
    6.R.F. Barth, J.A. Coderre, M.G.H. Vicente, and T.E. Blue, Clin. Cancer Res. 11, 3987 (2005).CrossRef
    7.P. Kaszynski and A.G. Douglass, J. Organomet. Chem. 581, 28 (1999).CrossRef
    8.G.E. Moore, IEEE Solid State Circuits Newsl. 20, 33 (2006).CrossRef
    9.R.R. Schaller, IEEE Spectr. 34, 52 (1997).CrossRef
    10.A. Mishra, C.Q. Ma, and P. Bäuerle, Chem. Rev. 109, 1141 (2009).CrossRef
    11.S. Yuan, C. Dai, J. Weng, Q. Mei, Q. Ling, L. Wang, and W. Huang, J. Phys. Chem. A 115, 4535 (2011).CrossRef
    12.P. Bai, E. Li, P.A. Collier, W.S. Chin, and K.P. Loh, Proceedings of the 2006 IEEE Conference Emerging Technologies—Nanoelectron, p 173 NanoSingapore, 2006.
    13.W.P. McCray, Nat. Nanotechnol. 4, 2 (2009).CrossRef
    14.W. Kang, Y. Zhang, Z. Wang, J.-O. Klein, C. Chappert, C. Ravelosona, G. Wang, Y. Zhang, and W. Zhao, ACM J. Emerg. Technol. Comput. Syst. 12, 16 (2015).CrossRef
    15.S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRef
    16.M. Castellano, R. Ruiz-García, J. Cano, J. Ferrando-Soria, E. Pardo, F.R. Fortea-Pérez, S.-E. Stiriba, W.P. Barros, H.O. Stumpf, L. Cañadillas-Delgado, J. Pasán, C. Ruiz-Pérez, G. de Munno, D. Armentano, Y. Journaux, F. Lloret, and M. Julve, Coord. Chem. Rev. 303, 110 (2015).CrossRef
    17.M. Barangi and P. Mazumder, IEEE Trans. Magn. 51, 1 (2015).CrossRef
    18.A. Khitun, M. Bao, and K.L. Wang, IEEE Trans. Magn. 44, 2141 (2008).CrossRef
    19.S. Patil, A. Lyle, J. Harms, D. J. Lilja, and J.-P. Wang, in 2010 IEEE Int. Conf. Comput. Des 125 (2010).
    20.G. Wang, W. Kang, Y. Cheng, and J. Nan, J. Electron. Sci. Technol. 12, 163 (2014).
    21.F. Prins, M. Monrabal-Capilla, E.A. Osorio, E. Coronado, and H.S.J. van der Zant, Adv. Mater. 23, 1545 (2011).CrossRef
    22.M.S. Alam, M. Stocker, K. Gieb, P. Müller, M. Haryono, and A. Grohmann, Angew. Chem. Int. Ed. 46, 159 (2010).
    23.S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1995).CrossRef
    24.V. Mujica, M. Kemp, and M.A. Ratner, J. Chem. Phys. 101, 6849 (1994).CrossRef
    25.V. Mujica, M. Kemp, and M.A. Ratner, J. Chem. Phys. 101, 6856 (1994).CrossRef
    26.J.M. Seminario, A.G. Zacarias, and P.A. Derosa, J. Chem. Phys. 116, 1671 (2002).CrossRef
    27.W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, J. Chem. Phys. 109, 2874 (1998).CrossRef
    28.J.M. Seminario, A.G. Zacarias, and P.A. Derosa, J. Phys. Chem. A 105, 791 (2001).CrossRef
    29.M. Dell’Angela, G. Kladnik, A. Cossaro, A. Verdini, M. Kamenetska, I. Tamblyn, S.Y. Quek, J.B. Neaton, D. Cvetko, A. Morgante, and L. Venkataraman, Nano Lett. 10, 2470 (2010).CrossRef
    30.S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, and J.B. Neaton, Nano Lett. 7, 3477 (2007).CrossRef
    31.P.S. Damle, W. Ghosh, and S. Datta, Phys. Rev. B 64, 201403 (2001).CrossRef
    32.I. Tamblyn, P. Darancet, S.Y. Quek, S.A. Bonev, and J.B. Neaton, Phys. Rev. B 84, 201402 (2011).CrossRef
    33.J.B. Neaton, M.S. Hybertsen, and S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006).CrossRef
    34.Gaussian 09, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, B.M.M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, H.P.H.G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, M.H.A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, T.N.M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, J.Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, E.B.J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, J.N.K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J.T.K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J.B.C.M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, R.E.S.V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, J.W.O.O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, G.A.V.R.L. Martin, K. Morokuma, V.G. Zakrzewski, A.D.D.P. Salvador, J.J. Dannenberg, S. Dapprich, J.C.O. Farkas, J.B. Foresman, J.V. Ortiz, and D.J. Fox, Gaussian, Inc., Wallingford, CT, 2010.
    35.A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRef
    36.B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).CrossRef
    37.O. Salomon, M. Reiher, and B.A. Hess, J. Chem. Phys. 117, 4729 (2002).CrossRef
    38.Atomistix ToolKit version 2014.2 (n.d.).
    39.J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2007).CrossRef
    40.P. Darancet, J.R. Widawsky, H.J. Choi, L. Venkataraman, and J.B. Neaton, Nano Lett. 12, 6250 (2012).CrossRef
    41.M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 18 (2001).
    42.M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).CrossRef
  • 作者单位:Benjamin Beach (1)
    Dustin Sauriol (2)
    Pedro Derosa (1) (3)

    1. Institute for Micromanufacturing/Physics, Louisiana Tech University, Ruston, LA, 71272, USA
    2. Institute of Technology, West Virginia University, West Virginia, 25136, USA
    3. Department of Mathematics and Physics, Grambling State University, Grambling, LA, 71245, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee–Yang–Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green’s functions formalism. The revised Perdew–Burke–Ernzerhf solids exchange–correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15–20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700