Spatial and Spectral Representations of the Geoid-to-Quasigeoid Correction
详细信息    查看全文
  • 作者:Robert Tenzer ; Christian Hirt ; Sten Claessens ; Pavel Novák
  • 关键词:Correction ; Geoid ; Gravity ; Height ; Quasigeoid
  • 刊名:Surveys in Geophysics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:36
  • 期:5
  • 页码:627-658
  • 全文大小:793 KB
  • 参考文献:Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil Trans Roy Soc (Lond) B 145:101-04CrossRef
    Allister NA, Featherstone WE (2001) Estimation of Helmert orthometric heights using digital barcode levelling, observed gravity and topographic mass-density data over part of Darling Scarp, Western Australia. Geom Res Aust 75:25-2
    Ardalan AA, Grafarend EW (1999) A first test for W0 the time variation of W0 based on three GPS campaigns of the Baltic Sea level project, final results of the Baltic Sea Level 1997 GPS campaign. Rep Finnish Geod Inst 99(4):93-12
    ?rgen J (2004) The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. J Geod 78:314-32CrossRef
    Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonoph 240:248-80
    Bagherbandi M, Tenzer R (2013) Geoid-to-quasigeoid separation computed using the GRACE/GOCE global geopotential model GOCO02S—a case study of Himalayas, Tibet and central Siberia. Terr Atmo Ocean Sci 24(1):59-8CrossRef
    Bruns H (1878) Die Figur der Erde. Publ Preuss Geod Inst, Berlin
    Burke KF, True SA, Bur?a M, Raděj K (1996) Accuracy estimates of geopotential models and global geoids. In: Rapp RH, Cazenave AA, Nerem RS (eds) Proceedings of symposium no 116 held in Boulder, CO, USA, July 12, 1995. Springer, Berlin, pp 50-0
    Bur?a M, Radej K, ?íma Z, True SA, Vatrt V (1997) Determination of the geopotential scale factor from TOPEX/POSEIDON satellite altimetry. Stud Geoph Geod 41:203-16CrossRef
    Bur?a M, Kouba J, Kumar M, Müller A, Radej K, True SA, Vatrt V, Vojtí?ková M (1999) Geoidal geopotential and world height system. Stud Geoph Geod 43:327-37CrossRef
    Bur?a M, Kouba J, Müller A, Raděj K, True SA, Vatrt V, Vojtí?ková M (2001) Determination of geopotential differences between local vertical datums and realization of a World Height System. Stud Geoph Geod 45:127-32CrossRef
    Bur?a M, Kenyon S, Kouba J, ?íma Z, Vatrt V, Vítek V, Vojtí?ková M (2007) The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2):103-10CrossRef
    Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing geopotential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86(9):681-94CrossRef
    Dennis ML, Featherstone WE (2003) Evaluation of orthometric and related height systems using a simulated mountain gravity field. In: Tziavos IN (ed) Gravity and geoid 2002. Aristotle Univ Thessaloniki, Dept Surv Geod, Thessaloniki, pp 389-94
    Drewes H, Dodson AH, Fortes LP, Sanchez L, Sandoval P (eds) (2002) Vertical reference systems. IAG symposia 24. Springer, Berlin, p 353
    Featherstone WE (2013) Deterministic, stochastic, hybrid and band-limited modifications of Hotine’s integral. J Geod 87(5):487-00CrossRef
    Featherstone WE, Kuhn M (2006) Height systems and vertical datums: a review in the Australian context. J Spatial Sci 51(1):21-2CrossRef
    Filmer MS, Featherstone WE, Kuhn M (2010) The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J Geod 84(8):501-13CrossRef
    Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geod 83:829-47CrossRef
    Goiginger H, Rieser D, Mayer-Guerr T, Pail R, Schuh W.-D., J?ggi A, Maier A (2011) GOCO, consortium: the combined satellite-only global gravity field model GOCO02S. European Geosciences Union General Assembly 2011, Vienna
    Grafarend EW, Ardalan AA (1997) W0: an estimate of the Finnish Height Datum N60, epoch 1993.4 from twenty-five GPS points of the Baltic Sea level project. J Geod 71(11):673-79
    Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco
    Helmert FR (1884) Die mathematischen und physikalischen Theorien der h?heren Geod?sie, vol 2. Teubner, Leipzig
    Helmert FR (1890) Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen. Ver?ff K?nigl Preuss Geod Inst, no 1
    Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559-560CrossRef
    Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the Earth’s surface using the gradient approach. J Geod 86(9):729-44CrossRef
    Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy, 2nd edn. Springer, Berlin
    Huang J, Vaní?ek P, Pagiatakis SD, Brink W (2001) Effect of topographical density on the geoid in the Rocky Mountains. J Geod 74:805-15CrossRef
    Hwang C, Hsiao YS (2003) Orthometric height corrections from leveling, gravity, density and elevation data: a case study in Taiwan. J Geod 77(5-):292-02
    Kao SP, Rongshin H, Ning FS (
  • 作者单位:Robert Tenzer (1) (2)
    Christian Hirt (3) (4)
    Sten Claessens (3)
    Pavel Novák (1)

    1. New Technologies for the Information Society (NTIS), Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic
    2. The Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
    3. Western Australian Geodesy Group and The Institute for Geoscience Research, Curtin University, Perth, Australia
    4. Institute for Astronomical and Physical Geodesy and Institute for Advanced Study, Technische Universit?t München, Munich, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Geosciences
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1573-0956
文摘
In geodesy, the geoid and the quasigeoid are used as a reference surface for heights. Despite some similarities between these two concepts, the differences between the geoid and the quasigeoid (i.e. the geoid-to-quasigeoid correction) have to be taken into consideration in some specific applications which require a high accuracy. Over the world’s oceans and marginal seas, the quasigeoid and the geoid are identical. Over the continents, however, the geoid-to-quasigeoid correction could reach up to several metres especially in the mountainous, polar and geologically complex regions. Various methods have been developed and applied to compute this correction regionally in the spatial domain using detailed gravity, terrain and crustal density data. These methods utilize the gravimetric forward modelling of the topographic density structure and the direct/inverse solutions to the boundary-value problems in physical geodesy. In this article, we provide a brief summary of existing theoretical and numerical studies on the geoid-to-quasigeoid correction. We then compare these methods with the newly developed procedure and discuss some numerical and practical aspects of computing this correction. In global applications, the geoid-to-quasigeoid correction can conveniently be computed in the spectral domain. For this purpose, we derive and present also the spectral expressions for computing this correction based on applying methods for a spherical harmonic analysis and synthesis of global gravity, terrain and crustal structure models. We argue that the newly developed procedure for the regional gravity-to-potential conversion, applied for computing the geoid-to-quasigeoid correction in the spatial domain, is numerically more stable than the existing inverse models which utilize the gravity downward continuation. Moreover, compared to existing spectral expressions, our definition in the spectral domain takes not only the terrain geometry but also the mass density heterogeneities within the whole Earth into consideration. In this way, the geoid-to-quasigeoid correction and the respective geoid model could be determined more accurately. Keywords Correction Geoid Gravity Height Quasigeoid

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700