Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study
详细信息    查看全文
  • 作者:Jian Huang ; Feng-lei Du ; Yuan Yao ; Qun Wan…
  • 关键词:Electroencephalography (EEG) ; Abacus training ; Distance effect ; Numerical magnitude processing ; Child ; A ; B842 ; 鑴戠數鍥?/li> 鐝犵畻璁粌 ; 璺濈鏁堝簲 ; 鏁伴噺鍔犲伐 ; 鍎跨
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:16
  • 期:8
  • 页码:661-671
  • 全文大小:833 KB
  • 参考文献:Ansari, D., Karmiloff-Smith, A., 2002. Atypical trajectories of number development: a neuroconstructivist perspective. Trends Cogn. Sci., 6(12):511鈥?16. [doi:10.鈥?016/鈥婼1364-6613(02)02040-5 ]PubMed View Article
    Ansari, D., Garcia, N., Lucas, E., et al., 2005. Neural correlates of symbolic number processing in children and adults. Neuroreport, 16(16):1769鈥?773. [doi:10.鈥?097/鈥?1.鈥媤nr.鈥?000183905.鈥?3396.鈥媐1 ]PubMed View Article
    Butterworth, B., 2005. The development of arithmetical abilities. J. Child Psychol. Psychiatry, 46(1):3鈥?8. [doi:10.鈥?097/鈥?1.鈥媤nr.鈥?000183905.鈥?3396.鈥媐1 ]PubMed View Article
    Chen, F., Hu, Z., Zhao, X., et al., 2006. Neural correlates of serial abacus mental calculation in children: a functional MRI study. Neurosci. Lett., 403(1鈥?):46鈥?1. [doi:10.鈥?016/鈥媕.鈥媙eulet.鈥?006.鈥?4.鈥?41 ]PubMed View Article
    Cohen Kadosh, R., Walsh, V., 2009. Numerical representation in the parietal lobes: abstract or not abstract? Behav. Brain Sci., 32(3鈥?):313鈥?28. [doi:10.鈥?017/鈥婼0140525X0999093鈥? ]PubMed View Article
    Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., et al., 2007. Notation-dependent and-independent representations of numbers in the parietal lobes. Neuron, 53(2):307鈥?14. [doi:10.鈥?016/鈥媕.鈥媙euron.鈥?006.鈥?2.鈥?25 ]PubMed View Article
    Dehaene, S., 1996. The organization of brain activations in number comparison: event-related potentials and the additive-factors method. J. Cogn. Neurosci., 8(1):47鈥?8. [doi:10.鈥?162/鈥媕ocn.鈥?996.鈥?.鈥?.鈥?7 ]PubMed View Article
    Dehaene, S., Akhavein, R., 1995. Attention, automaticity, and levels of representation in number processing. J. Exp. Psychol. Learn. Mem. Cogn., 21(2):314. [doi:10.鈥?037/鈥?278-7393.鈥?1.鈥?.鈥?14 ]PubMed View Article
    Dehaene, S., Dupoux, E., Mehler, J., 1990. Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. J. Exp. Psychol. Hum. Percept. Perform., 16(3):626. [doi:10.鈥?037/鈥?096-1523.鈥?6.鈥?.鈥?26 ]PubMed View Article
    Dehaene, S., Dehaene-Lambertz, G., Cohen, L., 1998. Abstract representations of numbers in the animal and human brain. Trends Neurosci., 21(8):355鈥?61. [doi:10.鈥?016/鈥婼0166-2236(98)01263-6 ]PubMed View Article
    Dehaene, S., Molko, N., Cohen, L., et al., 2004. Arithmetic and the brain. Curr. Opin. Neurobiol., 14(2):218鈥?24. [doi:10.鈥?016/鈥媕.鈥媍onb.鈥?004.鈥?3.鈥?08 ]PubMed View Article
    de Smedt, B., Verschaffel, L., Ghesqui猫re, P., 2009. The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. J. Exp. Child Psychol., 103(4):469鈥?79. [doi:10.鈥?016/鈥媕.鈥媕ecp.鈥?009.鈥?1.鈥?10 ]PubMed View Article
    Du, F., Chen, F., Li, Y., et al., 2013. Abacus training modulates the neural correlates of exact and approximate calculations in Chinese children: an fMRI study. BioMed Res. Int., 2013:694075. [doi:10.鈥?155/鈥?013/鈥?94075 ]
    Frank, M.C., Barner, D., 2012. Representing exact number visually using mental abacus. J. Exp. Psychol. Gen., 141(1):134鈥?39. [doi:10.鈥?037/鈥媋0024427 ]PubMed View Article
    Furman, T., Rubinsten, O., 2012. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia. Behav. Brain Funct., 8(1):55. [doi:10.鈥?186/鈥?744-9081-8-55 ]PubMed Central PubMed View Article
    Ganor-Stern, D., Tzelgov, J., 2008. Across-notation automatic numerical processing. J. Exp. Psychol. Learn. Mem. Cogn., 34(2):430. [doi:10.鈥?037/鈥?278-7393.鈥?4.鈥?.鈥?30 ]PubMed View Article
    Grune, K., Mecklinger, A., Ullsperger, P., 1993. Mental comparison: P300 component of the ERP reflects the symbolic distance effect. Neuroreport, 4(11):1272鈥?274. [doi:10.鈥?097/鈥?0001756-199309000-00016 ]PubMed View Article
    Haffner, J., Baro, K., Langner, C., et al., 2005. HRT 1-4: Heidelberger Rechentest: Erfassung Mathematischer Basiskompetenzen im Grundschulalter. Hogrefe, Gottingen (in German).
    Hanakawa, T., Honda, M., Okada, T., et al., 2003. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage, 19(2):296鈥?07. [doi:10.鈥?016/鈥婼1053-8119(03)00050-8 ]PubMed View Article
    Hatano, G., 1988. Social and motivational bases for mathematical understanding. NDCAD, 1988(41):55鈥?0.
    Hatano, G., Miyake, Y., Binks, M.G., 1977. Performance of expert abacus operators. Cognition, 5(1):47鈥?5. [doi:10.鈥?016/鈥?010-0277(77)90016-6 ]View Article
    Heine, A., Wi脽mann, J., Tamm, S., et al., 2013. An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities. Cortex, 49(8):2162鈥?177. [doi:10.鈥?016/鈥媕.鈥媍ortex.鈥?012.鈥?1.鈥?09 ]PubMed View Article
    Henik, A., Tzelgov, J., 1982. Is three greater than five: the relation between physical and semantic size in comparison tasks. Mem. Cognit., 10(4):389鈥?95. [doi:10.鈥?758/鈥婤F03202431 ]PubMed View Article
    Holloway, I.D., Ansari, D., 2009. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children鈥檚 mathematics achievement. J. Exp. Child Psychol., 103(1):17鈥?9. [doi:10.鈥?016/鈥媕.鈥媕ecp.鈥?008.鈥?4.鈥?01 ]View Article
    Jiang, T., Qiao, S., Li, J., et al., 2010. Effects of symbol type and numerical distance on the human event-related potential. Neuropsychologia, 48(1):201鈥?10. [doi:10.鈥?016/鈥媕.鈥媙europsychologia鈥?鈥?009.鈥?9.鈥?05 ]PubMed View Article
    Landerl, K., Bevan, A., Butterworth, B., 2004. Developmental dyscalculia and basic numerical capacities: a study of 8鈥?-year-old students. Cognition, 93(2):99鈥?25. [doi:10.鈥?016/鈥媕.鈥媍ognition.鈥?003.鈥?1.鈥?04 ]PubMed View Article
    Libertus, M.E., Woldorff, M.G., Brannon, E.M., 2007. Electrophysiological evidence for notation independence in numerical processing. Behav. Brain Funct., 3(1):1鈥?5. [doi:10.鈥?186/鈥?744-9081-3-1 ]View Article
    Mccloskey, M., 1992. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44(1鈥?):107鈥?57. [doi:10.鈥?016/鈥?010-0277(92)90052-J ]PubMed View Article
    Moyer, R.S., Landauer, T.K., 1967. Time required for judgements of numerical inequality. Nature, 215(5109):1519鈥?520. [doi:10.鈥?038/鈥?151519a0 ]PubMed View Article
    Mussolin, C., de Volder, A., Grandin, C., et al., 2010a. Neural correlates of symbolic number comparison in developmental dyscalculia. J. Cogn. Neurosci., 22(5):860鈥?74. [doi:10.鈥?162/鈥媕ocn.鈥?009.鈥?1237 ]PubMed View Article
    Mussolin, C., Mejias, S., No毛l, M.P., 2010b. Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1):10鈥?5. [doi:10.鈥?016/鈥媕.鈥媍ognition.鈥?009.鈥?0.鈥?06 ]PubMed View Article
    Naccache, L., Dehaene, S., 2001. Unconscious semantic priming extends to novel unseen stimuli. Cognition, 80(3): 215鈥?29. [doi:10.鈥?016/鈥婼0010-0277(00)00139-6 ]PubMed View Article
    Paulsen, D.J., Neville, H.J., 2008. The processing of nonsymbolic numerical magnitudes as indexed by ERPs. Neuropsychologia, 46(10):2532鈥?544. [doi:10.鈥?016/鈥媕.鈥媙europsychologia鈥?鈥?008.鈥?4.鈥?03 ]PubMed Central PubMed View Article
    Picton, T.W., 1992. The P300 wave of the human event-related potential. J. Clin. Neurophysiol., 9(4):456鈥?79. [doi:10.鈥?097/鈥?0004691-199210000-00002 ]PubMed View Article
    Pinel, P., Dehaene, S., Riviere, D., et al., 2001. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5):1013鈥?026. [doi:10.鈥?006/鈥媙img.鈥?001.鈥?913 ]PubMed View Article
    Price, G.R., Holloway, I., R盲s盲nen, P., et al., 2007. Impaired parietal magnitude processing in developmental dyscalculia. Curr. Biol., 17(24):R1042鈥揜1043. [doi:10.鈥?016/鈥媕.鈥媍ub.鈥?007.鈥?0.鈥?13 ]PubMed View Article
    Reeve, R., Reynolds, F., Humberstone, J., et al., 2012. Stability and change in markers of core numerical competencies. J. Exp. Psychol. Gen., 141(4):649. [doi:10.鈥?037/鈥媋0027520 ]PubMed View Article
    Rumelhart, D.E., Mcclelland, J.L., Group, P.R., 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA, p.560鈥?67.
    Schwarz, W., Heinze, H.J., 1998. On the interaction of numerical and size information in digit comparison: a behavioral and event-related potential study. Neuropsychologia, 36(11): 1167鈥?179. [doi:10.鈥?016/鈥婼0028-3932(98)00001-3 ]PubMed View Article
    Schwarz, W., Ischebeck, A., 2000. Sequential effects in number comparison. J. Exp. Psychol. Hum. Percept. Perform., 26(5):1606. [doi:10.鈥?037/鈥?096-1523.鈥?6.鈥?.鈥?606 ]PubMed View Article
    Solt茅sz, F., Szucs, D., D茅k谩ny, J., et al., 2007. A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neurosci. Lett., 417(2): 181鈥?86. [doi:10.鈥?016/鈥媕.鈥媙eulet.鈥?007.鈥?2.鈥?67 ]PubMed View Article
    Solt茅sz, F., Goswami, U., White, S., et al., 2011. Executive function effects and numerical development in children: behavioural and ERP evidence from a numerical stroop paradigm. Learn. Individ. Differ., 21(6):662鈥?71. [doi:10.鈥?016/鈥媕.鈥媗indif.鈥?010.鈥?0.鈥?04 ]View Article
    Szucs, D., Solt茅sz, F., J谩rmi, E., et al., 2007. The speed of magnitude processing and executive functions in controlled and automatic number comparison in children: an electro-encephalography study. Behav. Brain Funct., 3(1):23. [doi:10.鈥?186/鈥?744-9081-3-23 ]PubMed Central PubMed View Article
    Temple, E., Posner, M.I., 1998. Brain mechanisms of quantity are similar in 5-year-old children and adults. PNAS, 95(13):7836鈥?841. [doi:10.鈥?073/鈥媝nas.鈥?5.鈥?3.鈥?836 ]PubMed Central PubMed View Article
    Turconi, E., Jemel, B., Rossion, B., et al., 2004. Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cogn. Brain Res., 21(1):22鈥?8. [doi:10.鈥?016/鈥媕.鈥媍ogbrainres.鈥?004.鈥?5.鈥?03 ]View Article
    Wang, Y., Geng, F., Hu, Y., et al., 2013. Numerical processing efficiency improved in experienced mental abacus children. Cognition, 127(2):149鈥?58. [doi:10.鈥?016/鈥媕.鈥媍ognition.鈥?012.鈥?2.鈥?04 ]PubMed View Article
    Wu, H.R., Li, L., 2006. Norm establishment for Chinese rating scale of pupil鈥檚 mathematics abilities. J. Clin. Rehab. Tissue Eng. Res., 10(30):168鈥?71 (in Chinese).
    Zhang, H., Wang, X., 1985. The Chinese Version of the Raven鈥檚 Standard Progressive Matrices. Beijing Nor. Univ., Beijing, China (in Chinese).
  • 作者单位:Jian Huang (1)
    Feng-lei Du (1)
    Yuan Yao (1) (2)
    Qun Wan (1) (2)
    Xiao-song Wang (3)
    Fei-yan Chen (1)

    1. Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, China
    2. Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310028, China
    3. Heilongjiang Abacus Association, Haerbin, 150001, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700