Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations
详细信息    查看全文
  • 作者:Xiao-Lan Zong ; Chao-Qun Du ; Ming Yang ; Wei Song…
  • 关键词:Entanglement protection ; Partially collapsed measurement ; Bit ; flipping
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:14
  • 期:9
  • 页码:3423-3440
  • 全文大小:3,393 KB
  • 参考文献:1.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
    2.Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein鈥揚odolsky鈥揜osen channels. Phys. Rev. Lett. 70, 1895鈥?899 (1993)MATH MathSciNet CrossRef ADS
    3.Bouwmeester, D.: Experimental quantum teleportation. Nature 390, 575鈥?79 (1997)CrossRef ADS
    4.Kim, Y.-H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370鈥?373 (2001)CrossRef ADS
    5.Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661鈥?63 (1991)MATH MathSciNet CrossRef ADS
    6.Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557鈥?59 (1992)MATH MathSciNet CrossRef ADS
    7.Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(1鈥?), 022321 (2008)CrossRef ADS
    8.Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein鈥揚odolsky鈥揜osen states. Phys. Rev. Lett. 69, 2881鈥?884 (1992)MATH MathSciNet CrossRef ADS
    9.Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493鈥揜2496 (1995)CrossRef ADS
    10.Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793鈥?97 (1996)MATH MathSciNet CrossRef ADS
    11.Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585鈥?588 (1996)CrossRef ADS
    12.Lidar, D.A., Chuang, I., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594鈥?597 (1998)CrossRef ADS
    13.Kwiat, P.G., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498鈥?01 (2000)CrossRef ADS
    14.Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417鈥?421 (1999)MATH MathSciNet CrossRef ADS
    15.Wang, Y., Rong, X., Feng, P.B., Xu, W.J., Bo Chong, J.H., Gong, J.B., Du, J.F.: Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. Phys. Rev. Lett. 106(1鈥?), 040501 (2011)CrossRef ADS
    16.Zhang, J.F., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112(1鈥?), 050502 (2014)CrossRef ADS
    17.Man, Z.X., Xia, Y.J., An, N.B.: On-demand contro of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89(1鈥?), 013852 (2014)CrossRef ADS
    18.Man, Z.X., An, N.B., Xia, Y.J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739鈥?50 (2014)MathSciNet CrossRef ADS
    19.Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209鈥?19 (2014)MathSciNet CrossRef ADS
    20.Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80(1鈥?), 033838 (2009)CrossRef ADS
    21.Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(1鈥?), 040103 (2010)CrossRef ADS
    22.Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83(1鈥?), 054301 (2011)CrossRef ADS
    23.Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86(1鈥?), 012325 (2012)CrossRef ADS
    24.Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117鈥?20 (2012)CrossRef
    25.Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B 44(1鈥?), 165509 (2011)CrossRef ADS
    26.Liao, Z.Y., Al-Amri, M., Zubairy, M.S.: Protecting quantum entanglement from amplitude damping. J. Phys. B 46(1鈥?), 145501 (2013)CrossRef ADS
    27.Sun, Q.Q., Al-Amri, M., Davidovich, M.L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82(1鈥?), 052323 (2010)CrossRef ADS
    28.Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89(1鈥?1), 032303 (2014)CrossRef ADS
    29.Gross, C., Zibold, T., Nicklas, E., Esteve, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature (London) 464, 1165鈥?169 (2010)CrossRef ADS
    30.D眉r, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1鈥?2), 062314 (2000)MathSciNet CrossRef ADS
    31.Zong, X.L., Du, C.Q., Yang, M., Qing, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damping by local unitary operations. Phys. Rev. A 90(1鈥?), 062345 (2014)CrossRef ADS
    32.Weisskopf, V., Wigner, E.: Berechnung der natrlichen linienbreite auf grund der diracschen lichttheorie. Z. Phys. 63, 54鈥?3 (1930)MATH CrossRef ADS
    33.Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737鈥?742 (1999)CrossRef ADS
    34.Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(1鈥?1), 032314 (2002)CrossRef ADS
    35.Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(1鈥?), 035801 (2003)CrossRef ADS
    36.Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10(1鈥?0), 043014 (2008)CrossRef ADS
    37.Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245鈥?248 (1998)CrossRef ADS
  • 作者单位:Xiao-Lan Zong (1)
    Chao-Qun Du (1)
    Ming Yang (1)
    Wei Song (2)
    Qing Yang (1)
    Zhuo-Liang Cao (1) (2)

    1. Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University, Hefei, 230601, People鈥檚 Republic of China
    2. School of Electronic and Information Engineering, Hefei Normal University, Hefei, 230061, People鈥檚 Republic of China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
Protecting entanglement from decoherence has attracted more and more attention recently. Amplitude damping is a typical decoherence mechanism. If we detect the environment to guarantee no excitation escapes from the system, the amplitude damping is modified into a weak measurement of the system state. In this paper, based on local pulse series, we propose a scheme for protecting tripartite entanglement against decaying caused by weak-measurement-induced damping. Unlike previous bipartite state protection schemes, we consider three different situations: A series of unitary operations are applied on all of the three qubits, on two of the three qubits, and on only one qubit. The results show that this protocol can protect remote tripartite entanglement with a wide range of unitary operations. For the case of GHZ state, when the uniform pulses are applied on all qubits or on two qubits, the tripartite entanglement can be fixed around the entanglement of the initial state. Moreover, in the W state case, if a train of uniform pulses is applied on two qubits, we can see that the bipartite entanglement can be enhanced to the maximum with the third qubit being traced out. We also generalize our scheme to the cases of the superposition and mixture of GHZ and W states, and the numerical simulation shows that our protection scheme still works fine. The most distinct advantage of this entanglement protection scheme is that there is no need for the users to synchronize their operations. The fluctuations of the time interval between two adjacent local unitary operations, the operation parameters, and the pulse duration are all taken into consideration. All these advantages suggest that our scheme is much simpler and feasible, which may warrant its experimental realization. Keywords Entanglement protection Partially collapsed measurement Bit-flipping

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700