Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment
详细信息    查看全文
  • 作者:Yuanxi Chen (1)
    Xiaodong Zhou (1)
    Qunfang Lin (2)
    Danfeng Jiang (1)
  • 关键词:Bacterial cellulose ; Gelatin ; In situ ; Glutaraldehyde ; Physical properties
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:21
  • 期:4
  • 页码:2679-2693
  • 全文大小:4,141 KB
  • 参考文献:1. B?ckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141-149 CrossRef
    2. B?ckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320-30 CrossRef
    3. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697-704 CrossRef
    4. Brown EE, Zhang JW, Laborie MPG (2011) Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18:631-41 CrossRef
    5. Brown EE, Laborie MPG, Zhang JW (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127-37 CrossRef
    6. Cai ZJ, Hou CW, Yang G (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 121:1488-494
    7. Chang ST, Chen LC, Lin SB, Chen HH (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27:137-44 CrossRef
    8. Chen YX, Zhou XD, Yin XC, Lin QF, Zhu MQ (2014) A novel route to modify the interface of glass fiber-reinforced epoxy resin composite via bacterial cellulose. Int J Polym Mater 63:221-27 CrossRef
    9. Choi YS, Hong SR, Lee YM et al (1999) Study on gelatin-containing artificial skin: I. Prepatation and characteristics of novel gelatin-alginate sponge. Biomaterials 20:409-17 CrossRef
    10. Courts A (1954) The N-terminal amino acid residues of gelatin. 2 thermal degradation. Biochem J 58:74-9
    11. Engelhardt J (1995) Sources, industrial derivatives, and commercial applications of cellulose. Carbohydr Eur 12:5-4
    12. Gao C, Yan T, Dai K, Wan Y (2011) Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose 19:761-68 CrossRef
    13. Gennadios A, Handa A, Froning GW, Weller CL, Hanna MA (1998) Physical properties of egg white dialdehyde starch films. J Agric Food Chem 46:1297-302 CrossRef
    14. Goissis G, Junior ME, Marcant?nio RAC et al (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27-4 CrossRef
    15. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642-646 CrossRef
    16. Hans S (1992) Swelling kinetics of polymers. Macromol Sci Phys Part B 33:1-
    17. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13-6 CrossRef
    18. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by / Acetobacter Xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183-88 CrossRef
    19. Imai T, Kimura S, Iijima T et al (1990) Rapidly absorbed solid oral formulations of ibuprofen using water-soluble gelatin. J Pharm Pharmacol 42:615-19 CrossRef
    20. Jonas R, Farah LH (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101-06 CrossRef
    21. Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95-05 CrossRef
    22. Kimura S, Nishiyama T, Imai T, Otagiri M (1990) Improved dissolution and absorption of drugs using low molecular gelatin. Acta Pharm Nord 2:65-2
    23. Kramer F, Klemm D, Schumann D et al (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 224:136-48 CrossRef
    24. Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508-18 CrossRef
    25. Mansur HS, Costa ESJ, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng, C 29:1574-583 CrossRef
    26. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183-96 CrossRef
    27. Marois Y, Chakfé N, Deng X et al (1995) Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131-139 CrossRef
    28. Martucci JF, Ruseckaite RA (2009) Tensile properties, barrier properties, and biodegradation in soil of compression: molded gelatin-dialdehyde starch films. J Appl Polym Sci 112:2166-178 CrossRef
    29. Mathew AP, Oksman K, Pierron D, Harmad MF (2012) Crosslinked fibrous composites based on cellulose nanofibers and in situ pH induced collagen fibrillation. Cellulose 19:139-50 CrossRef
    30. Mu C, Liu F, Cheng Q, Li H, Wu B, Zhang G et al (2010) Collagen cryogel cross-linked by dialdehyde starch. Macromol Mater Eng 295:100-07
    31. Nakayama A, Kakugo A, Gong JP et al (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124-128 CrossRef
    32. Pardo AG (1996) Effect of surfactants on cellulose production by / Necteia catalinensis. Curr Microbiol 33:275-78 CrossRef
    33. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35-8
    34. Strobin G, Wlochowicz A, Ciechańska D, Boryniec S, Struszczyk H, Sobczak S (2003) Molecular parameters of bacterial cellulose. Effect of temperature and pH biosynthesis medium. Polimery 48:779-83
    35. Tahara N, Yano H, Yoshinaga F (1997) Two types of cellulase activity produced by a cellulose-producing Acetobacter strain. J Ferment Bioeng 83:389-92 CrossRef
    36. Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782-94 CrossRef
    37. Ulubayram K, Cakar AN, Korkusuz P et al (2001) EGF containing gelatin-based wound dressings. Biomaterials 22:1345-356 CrossRef
    38. Wang J, Wan YZ, Han J et al (2011) Nanocomposite prepared by immobilizing gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett 6:133-36 CrossRef
    39. Wine Y, Cohen-Hadar N, Freeman A, Frolow F (2007) Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol Bioeng 9:711-18 CrossRef
    40. Yao CH, Liu BS, Chang CJ et al (2004) Preparation of networks of gelatin and genipin as degradable biomaterials. Mater Chem Phys 83:204-08 CrossRef
    41. Zhang YZ, Venugopal J, Huang ZM et al (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911-917 CrossRef
  • 作者单位:Yuanxi Chen (1)
    Xiaodong Zhou (1)
    Qunfang Lin (2)
    Danfeng Jiang (1)

    1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Room 515, No. 16 Laboratory Building, 130 Meilong Road, Shanghai, 200237, China
    2. School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
  • ISSN:1572-882X
文摘
Bacterial cellulose (BC)/GEL composites were prepared in situ by adding gelatin into BC-producing culture medium. The addition of gelatin interfered with the formation of the BC pellicle structure and thus made the BC yield and growth rate quite different from that of pure BC. Scanning electron microscope images showed that the width of cellulose ribbons became narrower than that of pure BC and the gelatin filled in the pores of BC to form a dense structure. The addition level of gelatin significantly influences the yield of BC/GEL composites. An optimum value of 0.5?wt/v% gelatin was attained, with which the highest yield of 0.0541?g/100?mL was achieved. Under this condition, the weight percentage of gelatin in BC/GEL composite was 65?wt%. BC/GEL composites were treated with glutaraldehyde to crosslink BC fibrils and gelatin. The crosslinking degree, determined by the concentration of glutaraldehyde and crosslinking time, could affect the swelling behavior, thermal stability and mechanical properties of composites. With increasing of the crosslinking degree, the crystallinity index and swelling behavior of the composites decreased. The increase in the crosslinking degree also descreased the composite’s strain at break in elongation but increased the compressive and tensile strength. Covalent bonding between BC and gelatin provides good strength retention to the glutaraldehyde-treated composites with a high crosslinking degree. Considering the cytocompatibility and properties of composites, the most appropriate concentration of glutaraldehyde and crosslinking time were 1.0?wt/v% and 24?h, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700