Crystallization of polyphenylene sulfide reinforced with aluminum nitride composite: effects on thermal and mechanical properties of the composite
详细信息    查看全文
  • 作者:Bingbing Guo ; Qunfang Lin ; Xiuge Zhao ; Xiaodong Zhou
  • 关键词:Thermal conductivity ; Aluminum nitride ; Polyphenylene sulfide ; Energy dispersive spectrometry
  • 刊名:Iranian Polymer Journal
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:24
  • 期:11
  • 页码:965-975
  • 全文大小:2,840 KB
  • 参考文献:1.Díez-Pascual AM, Naffakh M, Marco C, Ellis G (2012) Mechanical and electrical properties of carbon nanotube/poly(phenylene sulfide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos Part A Appl Sci Manuf 43:603–612CrossRef
    2.Naffakh M, Díez-Pascual AM, Marco C, Ellis G (2012) Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. J Mater Chem 22:1418–1425CrossRef
    3.Yu SZ, Wong WM, Hu X, Juay YK (2009) The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. J Appl Polym Sci 113:3477–3483CrossRef
    4.Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528–2534CrossRef
    5.Diez-Pascual AM, Naffakh M (2013) Inorganic nanoparticle-modified poly(phenylene sulfide)/carbon fiber laminates: thermomechanical behaviour. Materials 6:3171–3193CrossRef
    6.Gao ZF, Zhao L (2015) Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Mater Design 66:176–182CrossRef
    7.Saeed K, Park S-Y (2011) Multiwalled-carbon nanotubes/poly(butylene terephthalate) nanofibres: morphological, mechanical and thermal properties. Iran Polym J 20:795–802
    8.Chen YF, Yue W, Bian ZZ, Fan Y, Lei QQ (2013) Preparation and properties of KH550-Al2O3/PI-EP nanocomposite material. Iran Polym J 22:377–383CrossRef
    9.Xie SH, Zhu BK, Li JB, Wei XZ, Xu ZK (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23:797–801CrossRef
    10.Gu JW, Xie C, Li HL, Dang J, Geng WC, Zhang QY (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35:1087–1092CrossRef
    11.Hasselman DPH, Lloyd FJ (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515CrossRef
    12.Wattanakul K, Manuspiya H, Yanumet N (2011) Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size. J Compos Mater 45:1967–1980CrossRef
    13.Ye CM, Shentu BQ, Weng ZX (2006) Thermal conductivity of high density polyethylene filled with graphite. J Appl Polym Sci 101:3806–3810CrossRef
    14.Zheng CF, Yang ZF, Lv CC, Zhou XP, Xie XL (2013) Thermal stability and abrasion resistance of polyacrylate/nano-silica hybrid coatings. Iran Polym J 22:465–471CrossRef
    15.Jung J, Kim J, Uhm YR, Jeon JK, Lee S, Lee HM, Rhee CK (2010) Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites. Thermochim Acta 499:8–14CrossRef
    16.Gu JW, Li N, Tian LD, Lv ZY, Zhang QY (2015) High thermal conductivity graphite nanoplatelets/UHMWPE nanocomposites. RSC Adv 5:36334–36339CrossRef
    17.Gonzalez-Dominguez JM, Castell P, Bespin-Gascon S, Anson-Casaos A, Diez-Pascual AM, Gomez-Fatou AM, Benito AM, Maser WK, Martinez MT (2012) Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J Mater Chem 22:21285–21297CrossRef
    18.Gu JW, Zhang QY, Dang J, Zhang JP, Chen SJ (2009) Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polym Bull 62:689–697CrossRef
    19.Gu JW, Zhang QY, Dang J, Yin CY, Chen SJ (2012) Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. J Appl Polym Sci 124:132–137CrossRef
    20.Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499:40–47CrossRef
    21.Gu JW, Zhang QY, Dang J, Xie C (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23:1025–1028CrossRef
    22.Gu JW, Zhang QY, Zhang JP, Wang WW (2010) Studies on the preparation of polystyrene thermal conductivity composites. Polym-Plast Technol Eng 49:1385–1389CrossRef
    23.Gu JW, Zhang QY, Dang J, Zhang JP, Chen SJ (2009) Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites. Polym Eng Sci 49:1030–1034CrossRef
    24.Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42:1863–1873CrossRef
    25.Liu Y, Wang YF, Gerasimov TG, Heffner KH, Harmon JP (2005) Thermal analysis of novel underfill materials with optimum processing characteristics. J Appl Polym Sci 98:1300–1307CrossRef
    26.Xu YS, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos Part A Appl Sci Manuf 32:1749–1757CrossRef
    27.Yu S, Wong WM, Hu X, Juay YK (2009) The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. J Appl Polym Sci 113:3477–3483CrossRef
    28.Deng S, Lin Z, Xu B, Qiu W, Liang K, Li W (2014) Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites. J Therm Anal Calorim 118:197–203CrossRef
    29.Goyal RK, Jadhav P, Tiwari AN (2011) Preparation and properties of new polyphenylene sulfide/AlN composites for electronic packaging. J Electron Mater 40:1377–1383CrossRef
    30.Díez-Pascual AM, Naffakh M (2012) Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater Chem Phys 135:348–357CrossRef
    31.Díez-Pascual AM, Naffakh M (2012) Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled carbon nanotubes. Carbon 50:857–868CrossRef
    32.Agarwal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2003) Temperature dependence of effective thermal conductivity and thermal diffusivity of treated and untreated polymer composites. J Appl Polym Sci 89:1708–1714CrossRef
    33.Hosseini SH, Entezami AA (2005) Studies of thermal and electrical conductivity behaviours of polyaniline and polypyrrole blends with polyvinyl acetate, polystyrene and polyvinyl chloride. Iran Polym J 14:201–209
    34.Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42CrossRef
    35.Choy CL (1977) Thermal conductivity of polymers. Polymer 18:984–1004CrossRef
    36.Weidenfeller B, Hofer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos Part A Appl Sci Manuf 33:1041–1053CrossRef
    37.Wang XJ, Zhang LZ (2015) A randomly distributed filler model for heat conductivity prediction in filled composite materials considering fillers aggregation. Heat Trans Eng 36:929–936CrossRef
    38.Nielsen LE (1973) Thermal conductivity of particulate-filled polymers. J Appl Polym Sci 17:3819–3820CrossRef
    39.Agari Y, Uno T (1986) Estimation on thermal conductivities of filled polymers. J Appl Polym Sci 32:5705–5712CrossRef
    40.Fang XQ, Wang XH, Duan SM, Zhang T (2009) Multiple scattering of thermal waves and non-steady effective thermal conductivity of composites with dense coated fibers. Thermochim Acta 485:49–56CrossRef
    41.Wu DF, Wu LF, Gao F, Zhang M, Yan CH (2008) Poly(phenylene sulfide) magnetic composites. II. Crystallization, thermal, and viscoelastic properties. Polym Eng Sci 48:966–975CrossRef
    42.Diez-Pascual AM, Diez-Vicente AL (2014) High-performance aminated poly(phenylene sulfide)/ZnO nanoconnposites for medical applications. Acs Appl Mater Interf 6:10132–10145CrossRef
  • 作者单位:Bingbing Guo (1)
    Qunfang Lin (2)
    Xiuge Zhao (3)
    Xiaodong Zhou (1)

    1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
    2. School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
    3. Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, People’s Republic of China
  • 刊物主题:Polymer Sciences; Ceramics, Glass, Composites, Natural Methods;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-5265
文摘
Aluminum nitride/polyphenylene sulfide (AlN/PPS) composites were prepared using a melt-blended method, and the thermal, mechanical, morphology, and dielectric properties of the composites were systematically investigated. The results showed that the thermal conductivity of AlN/PPS composites increased with the addition of AlN, in various amounts, by forming a conductive network in the composites due to the filler. Wide-angle X-ray diffraction and scanning electron micrograph/energy dispersive spectrometry were employed to investigate the effects of AlN addition on the crystal property of the matrix. The test results showed that the crystallinity of the PPS increased with higher AlN content at first, and dropped when the volume content of AlN was over 15 vol%, that is because the AlN filler provided a heterogeneous nucleation effect on the PPS. Several thermal conductivity models were applied to predicate the thermal conductivity of AlN/PPS composites. The mechanical tests showed that the impact and flexural strength of the composites initially increased and decreased as the AlN contents increased. Thermogravimetric analyses showed that the thermal stability of PPS increased with the addition of AlN. The thermal conductivity of AlN/PPS composites was tested at different temperatures and it was found that by increases in temperature the thermal conductivity of the composites decreased. The electrical properties of the composites were also investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700