Explosive eruptions from the interaction of magmatic and hydrothermal systems during flank extension: the Bellecombe Tephra of Piton de La Fournaise (La Réunion Island)
详细信息    查看全文
  • 作者:Michael H. Ort ; Andrea Di Muro ; Laurent Michon…
  • 关键词:Piton de la Fournaise ; Bellecombe Tephra ; Hydrothermal eruption ; Flank fracture
  • 刊名:Bulletin of Volcanology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:78
  • 期:1
  • 全文大小:3,695 KB
  • 参考文献:Anderson K, Wells SG, Graham RC (2002) Pedogenesis of vesicular horizons, Cima Volcanic Field, Mojave Desert, California. Soil Sci Soc Am J 66:878–887CrossRef
    Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion). Etude volcanologique, structurale et pétrologique. Dissertation, University of Clermont-Ferrand.
    Bachèlery P, Mairine P (1990) Evolution morphostructurale du Piton de la Fournaise depuis 0,53 Ma. In: Lénat JF (ed) Le volcanisme de l’île de la Réunion. Monographie. Centre de Recherches Volcaniques, Clermont Ferrand, pp 213–242
    Bachèlery P, Lénat JF, Di Muro A, Michon L (2015) Piton de la Fournaise and Karthala volcanoes. Springer Active Volcanoes of the World series, Berlin
    Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcanol Geotherm Res 184:109–125CrossRef
    Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418CrossRef
    Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742. doi:10.​1007/​s00445-013-0742-1 CrossRef
    Brenguier F, Kowalski P, Staudacher T, Ferrazzini V, Lauret F, Boissier P, Catherine P, Lemarchand A, Pequegnat C, Meric O, Pardo C, Peltier A, Tait S, Shapiro NM, Campillo M, Di Muro A (2012) First results from the UnderVolc high resolution seismic and GPS network deployed on Piton de La Fournaise Volcano. Seism Res Lett 83:97–102. doi:10.​1785/​gssrl.​83.​1.​97 CrossRef
    Bret L, Join J-L, Legal X, Coudray J, Fritz B (2003) Argiles et zéolites dans l’altération d’un volcan bouclier en milieu tropical (Le Piton des Neiges, La Réunion). Comptes Rendus Geoscience 335:1031–1038CrossRef
    Di Muro A, Metrich N, Vergani D, Rosi M, Armienti P, Fougeroux T, Deloule E, Arienzo I, Civetta L (2014) The shallow plumbing system of Piton de la Fournaise Volcano (La Reunion Island, Indian Ocean) revealed by the major 2007 caldera-forming eruption. J Petrol 55:1287–1315CrossRef
    Di Muro A, Bachèlery P, Barsotti S, Bielli-Bousquet S, Boissier P, Braukmuller N, Brugier Y, Büttner R, Carey R, Cavalière C, Davoine PA, De Michieli-Vitturi M, Durand J, Frese I, Gurioli L, Mairine P, Marchini G, McPhie J, Métrich N, Michon L, Morandi A, Ort M, Pichavant M, Principe C, Saint-Marc C, Tulet PE, Vergani D, Villeneuve N, Walther G, Wörner G, Zimanowski B (2015) Evaluation de l’aléa volcanique à la Réunion – annéé II. Evaluation of the volcanic hazard at La Réunion - year II. Observatoire Volcanologique du Piton de la Fournaise, report for La Réunion Civil Defense, St Denis, Réunion Island, France, 40 p
    Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96. doi:10.​1016/​j.​catena.​2012.​06.​011 CrossRef
    Famin V, Welsch B, Okumura S, Bachèlery P, Nakashima S (2009) Three differentiation stages of a single magma at Piton de la Fournaise (Reunion hotspot). Geochem Geophys Geosyst 10:Q01007. doi:10.​1029/​2008GC002015 CrossRef
    Fiske RS, Rose TR, Swanson DA, Champion DE, McGeehin JP (2009) Kulanaokuaiki Tephra (ca. AD 400–1000): newly recognized evidence for highly explosive eruptions at Kīlauea Volcano, Hawaii. Geol Soc Am Bull 121:712–728CrossRef
    Fontaine FJ, Rabinowicz M, Boulègue J, Jouniaux L (2002) Constraints on hydrothermal processes on basaltic edifices: inferences on the conditions leading to hydrovolcanic eruptions at Piton de la Fournaise, Réunion Island, Indian Ocean. Ear Planet Sci Lett 200:1–14CrossRef
    Fontaine FR, Roult G, Michon L, Barruol G, Di Muro A (2014) The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station. Geophys Res Lett 41. doi:10.​1002/​2014GL059691
    Gudmundsson MT, Thordarson T, Höskuldsson Á, Larsen G, Björnsson H, Prata FJ, Oddsson B, Magnússon E, Högnadóttir T, Petersen GN, Hayward CL, Stevenson JA, Jónsdóttir I (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Nature 2:572. doi:10.​1038/​srep00572
    Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? J Volcanol Geotherm Res 66:295–308CrossRef
    Join J-L, Folio J-L, Robineau B (2005) Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J Volcanol Geotherm Res 147:187–201CrossRef
    Larsen J, Neal C, Webley P, Freymueller J, Haney M, McNutt SR, Schneider D, Prejean S, Schaefer J, Wessels R (2009) Eruption of Alaska volcano breaks historic pattern. Eos Trans AGU 90:173–174CrossRef
    Lénat JF, Fitterman D, Jackson DB, Labazuy P (2000) Geoelectrical structure of the central zone of Piton de la Fournaise Volcano (Reunion). Bull Volcanol 62:75–89CrossRef
    Lénat JF, Bachèlery P, Merle O (2012a) Anatomy of Piton de la Fournaise volcano (La Reunion, Indian Ocean). Bull Volcanol 74:1945–1961CrossRef
    Lénat JF, Bachèlery P, Peltier A (2012b) The interplay between collapse structures, hydrothermal systems, and magma intrusions: the case of the central area of Piton de la Fournaise volcano. Bull Volcanol 74:407–421. doi:10.​1007/​s00445-011-0535-3 CrossRef
    Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRef
    Mastin LG (1997) Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii. J Geophys Res 102:20,093–20,109CrossRef
    Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakāko‘i Ash, Kīlauea Volcano, Hawai’i. J Volcanol Geotherm Res 137:15–31CrossRef
    Mastin LG, Guffanti M, Servranckx R, Webley PW, Barsotti S, Dean K, Denlinger R, Durant A, Ewert JW, Gardner CA, Holliday AC, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to model of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21CrossRef
    McPhie J, Walker GPL, Christiansen RL (1990) Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea Volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bull Volcanol 52:334–354CrossRef
    Merle O, Mairine P, Michon L, Bachèlery P, Smietana M (2010) Calderas, landslides and paleo-canyons on Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 189:131–142. doi:10.​1016/​j.​jvolgeores.​2009.​11.​001 CrossRef
    Michon L, Saint-Ange F (2008) The morphology of Piton de la Fournaise basaltic shield volcano (La Réunion island): characterization and implication in the volcano evolution. J Geophys Res 113:B03203. doi:10.​1029/​2005JB004118
    Michon L, Staudacher T, Ferrazzini V, Bachèlery P, Martí J (2007) April 2007 collapse of Piton de la Fournaise: A new example of caldera formation. Geophys Res Lett 34:L21301. doi:10.​1029/​2007GL031248 CrossRef
    Michon L, Di Muro A, Villeneuve N, Saint-Marc C, Fadda P, Manta F (2013) Explosive activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): A historical and geological review. J Volcanol Geotherm Res 263:117–133CrossRef
    Michon L, Ferrazzini V, Di Muro A, Villeneuve N, Famin V (2015) Rift zones and magma plumbing system of Piton de la Fournaise volcano: how do they differ from Hawaii and Etna. J Volcanol Geotherm Res 303:112–129. doi:10.​1016/​j.​jvolgeores.​2015.​07.​031
    Mohamed-Abchir A (1996) Les Cendres de Bellecombe: un évènement majeur dans le passé récent du Piton de la Fournaise, Ile de la Réunion. Dissertation, Université de Paris VII.
    Mohamed-Abchir A, Semet SM, Boudon G, Ildefonse P, Bachèlery P, Clocchiati R (1998) Huge hydrothermal explosive activity on Piton de la Fournaise, Réunion Island: The Bellecombe ash member, 2700 BC. In: Casal R, Fytikas M, Sigvaldasson G, Vougioukalakis G (eds) Volcanic Risk—The European Laboratory Volcanoes. Eur Comm, Brussels, pp 447–455
    Morandi A, Principe C, Di Muro A, Leroi G, Michon L, Bachèlery P (2016) Pre-historic explosive activity at Piton de La Fournaise volcano. In: Bachèlery P, Lénat JF, Di Muro A, Michon L (eds) Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active Volcanoes of the World. Springer-Verlag, Berlin and Heidelberg, pp 107–138CrossRef
    Rose WI, Durant AJ (2011) Fate of volcanic ash: Aggregation and fallout. Geology 39:895–896. doi:10.​1130/​focus092011.​1 CrossRef
    Roult G, Peltier A, Taisne B, Staudacher T, Ferrazzini V, Di Muro A, the OVPF team (2012) A new comprehensive classification of the Piton de la Fournaise activity spanning the 1985–2010 period. Search and analysis of short-term precursors from a broad-band seismological station. J Volcanol Geotherm Res 241–242:78–104CrossRef
    Schumacher R, Schmincke H-U (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639CrossRef
    Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Sigurdsson H, Woods AW (1997) Volcanic Plumes. John Wiley and Sons, Chichester, 574 p
    Staudacher T, Allègre CJ (1993) Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth Planet Sci Lett 119:395–404CrossRef
    Swanson DA (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea. J Volcanol Geotherm Res 176:427–431CrossRef
    Swanson DA, Rose TR, Fiske RS, McGeehin JP (2012a) Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea’s caldera in about 1500 CE. J Volcanol Geotherm Res 215–216:8–25CrossRef
    Swanson DA, Zolkos SP, Haravitch B (2012b) Ballistic blocks around Kīlauea Caldera: Their vent locations and number of eruptions in the late 18th century. J Volcanol Geotherm Res 231–232:1–11CrossRef
    Swanson DA, Rose TR, Mucek AE, Garcia MO, Fiske RS, Mastin LG (2014) Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i. Geology 42:631–634. doi:10.​1130/​G35701.​1 CrossRef
    Swanson DA, Weaver SJ, Houghton BF (2015) Reconstructing the deadly eruptive events of 1790 at Kīlauea Volcano, Hawai‘i. Geol Soc Am Bull 127:503–515. doi:10.​1130/​B31116.​1 CrossRef
    Tulet P, Villeneuve N (2011) Large scale modeling of the transport, chemical transformation and mass budget of the sulfur emitted during the April 2007 eruption of Piton de la Fournaise. Atmos Chem Phys 11:4533–4546. doi:10.​5194/​acp-11-4533-2011
    Upton BGJ, Semet MP, Joron J-L (2000) Cumulate clasts in the Bellecombe Ash Member, Piton de la Fournaise, Réunion Island, and their bearing on cumulative processes in the petrogenesis of the Réunion lavas. J Volcanol Geotherm Res 104:297–318CrossRef
  • 作者单位:Michael H. Ort (1)
    Andrea Di Muro (2)
    Laurent Michon (3)
    Patrick Bachèlery (4)

    1. SESES, Northern Arizona University, Box 4099, Flagstaff, AZ, 86011, USA
    2. Observatoire Volcanologique du Piton de la Fournaise (OVPF), Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris-Cité, CNRS, Université Paris Diderot, 97418, La Plaine des Cafres, France
    3. Laboratoire Géosciences Réunion, Université de La Réunion, Institut de Physique du Globe de Paris, Sorbonne Paris-Cité, UMR-7154 CNRS, 97744, Saint-Denis, France
    4. Laboratoire Magmas et Volcans, UMR CNRS-IRD 6524, Observatoire de Physique du Globe de Clermont-Ferrand, Université Blaise Pascal, 5, rue Kessler, 63038, Clermont-Ferrand, France
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
Piton de la Fournaise (La Réunion Island) is a very active, primarily effusive ocean-island volcano. The Bellecombe Tephra represents at least three explosive eruptions that occurred between about 5465 and 2971 calendar years BP. Near the margin of the present-day Enclos Fouqué caldera margin, two Bellecombe eruptions produced a sequence of two tuff breccias interbedded with tuff. The tuff breccias only reach a few hundred meters outside the current caldera margin. At Petite Carrière, an old scoria cone ~1 km from the Enclos Fouqué margin, these two deposits (the “lower Bellecombe Tephra”) are represented by two tuffs with incipient soil formation at the top of each. They are overlain by a third unit (the upper Bellecombe Tephra) made of bedded lapilli tuff and tuff, some reworked in small debris flows off the scoria cone. The lapilli increase in size and the beds in thickness southeastward, toward Chisny volcano and away from the Enclos Fouqué caldera. Deposits from the upper Bellecombe tephra are correlated to sites 5 km northwest of Petite Carrière and 6 km north of a postulated vent location on the north side of Chisny volcano. Distribution patterns of all Bellecombe tephra are consistent with eruption columns that did not rise above 8 km asl. The ash fraction of the Bellecombe Tephra contains three juvenile components: a dominant gray vitric basaltic ash, an oceanitic (olivine-rich basalt) ash, and pyroxene-bearing gabbro with a few percent glass. It also contains doubly terminated clear quartz grains, and olivine and rarer clinopyroxene crystals. The lower Bellecombe Tephra contains an altered brown ash, whereas a tan-yellow clay-rich ash is common in the upper unit. Lava flows of gray aphyric basalt and oceanite are exposed at the surface and preceded the Bellecombe eruptions, but the gabbro, quartz crystals, and hydrothermally altered grains indicate the involvement of the magma/hydrothermal system from 0.5- to 2-km depth. We propose that the three eruptions of the Bellecombe tephra were preceded by voluminous eruptions of lava flows that led to seaward-sliding mass movement of the volcano. This opened fractures that explosively depressurized the hydrothermal system and incorporated magma and gabbro, from the magma system and probably from rock along the fissure, in the ejecta. This model is consistent with the small erupted volume (150 Mm3 for the lower two combined and about the same for the upper tephra) and presence of components from a variety of depths. If the eruption had excavated downward, more surficial components would be expected. Instead, the fissures allowed material from many depths to erupt simultaneously. Similar eruptions may occur after voluminous eruptions and/or when lateral seaward sliding of the volcano occurs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700