Energy Costs of Singular and Concomitant Pressure and Volume Overload Lesions
详细信息    查看全文
  • 作者:Canek Phillips (1)
    Rachael L. Simon-Walker (1)
    Lakshmi Prasad Dasi (1) (2)
  • 关键词:Energetics ; Severity ; Aortic stenosis ; Mitral regurgitation ; Hypertension ; Lumped parameter model
  • 刊名:Cardiovascular Engineering and Technology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:5
  • 期:1
  • 页码:44-53
  • 全文大小:1,576 KB
  • 参考文献:1. Abdolrazaghi, M., M. Navidbakhsh, and K. Hassani. Mathematical modelling and electrical analog equivalent of the human cardiovascular system. / Cardiovasc. Eng. 10:45-1, 2010. CrossRef
    2. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, R. Nishimura, R. L. Page, and B. Riegel. Amer Col Cardiology Amer, H., 2006. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. / Circulation 114:E84–E231, 2006. CrossRef
    3. Chandran, K. B., A. P. Yoganathan, and S. E. Rittgers. Biofluid Mechanics: The Human Circulation. Routledge: Taylor and Francis, 2006.
    4. Couet, J., M. Gaudreau, D. Lachance, E. Plante, E. Roussel, M. C. Drolet, and M. Arsenault. Treatment of combined aortic regurgitation and systemic hypertension: insights from an animal model study. / Am. J. Hypertens. 19:843-50, 2006. CrossRef
    5. Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. / Ann. Biomed. Eng. 37:661-73, 2009. CrossRef
    6. Garcia, D., P. Pibarot, J. G. Dumesnil, F. Sakr, and L. G. Durand. Assessment of aortic valve stenosis severity—a new index based on the energy loss concept. / Circulation 101:765-71, 2000. CrossRef
    7. Korakianitis, T., and Y. B. Shi. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. / J. Biomech. 39:1964-982, 2006. CrossRef
    8. MacIsaac, A. I., I. G. McDonald, R. L. Kirsner, S. A. Graham, and D. Tanzer. Left ventricular energy in mitral regurgitation: a preliminary report. / Aust. N Z J. Med. 22:532-40, 1992. CrossRef
    9. Pibarot, P., and J. G. Dumesnil. Improving assessment of aortic stenosis. / J. Am. Coll. Cardiol. 60:169-80, 2012. CrossRef
    10. Rieck, A. E., D. Cramariuc, K. Boman, C. Gohlke-Barwolf, E. M. Staal, M. T. Lonnebakken, A. B. Rossebo, and E. Gerdts. Hypertension in aortic stenosis implications for left ventricular structure and cardiovascular events. / Hypertension 60:90-7, 2012. CrossRef
    11. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer-simulation of arterial flow with applications to arterial and aortic stenoses. / J. Biomech. 25:1477-488, 1992. CrossRef
    12. Unger, P., C. Dedobbeleer, G. Van Camp, D. Plein, B. Cosyns, and P. Lancellotti. Mitral regurgitation in patients with aortic stenosis undergoing valve replacement. / Heart 96:9-4, 2010. CrossRef
  • 作者单位:Canek Phillips (1)
    Rachael L. Simon-Walker (1)
    Lakshmi Prasad Dasi (1) (2)

    1. Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
    2. School of Biomedical Engineering, Colorado State University, Room A103D Engineering, 1374 Campus Delivery, Fort Collins, CO, 80523-1374, USA
  • ISSN:1869-4098
文摘
Severity assessment in concomitant hypertension (HT) and heart valve disease or multiple heart valve disease is vague, and there exists no established severity index. The objective of this study is to propose a theoretical framework to utilize the ventricular power overhead rates of HT, aortic regurgitation (AR), aortic stenosis (AS), and mitral regurgitation (MR) as a new means to assess severity, particularly under concomitant conditions. A lumped parameter model was utilized to evaluate the ventricular energy budget under normal, singular, and concomitant combinations of HT, AS, AR, and MR; and calculate energy overhead rate defined as the % increase in ventricular power output. Disease severity for each lesion was modeled at mild, moderate, and severe levels per AHA/ACC guidelines. The overhead rate for HT and AS were 15% (mild), 25% (moderate), and 45% (severe); AR and MR corresponded to 40% (moderate) and 100% (severe). The overhead rate as a function of regurgitant fraction was shown to be highly nonlinear. The overhead rate for concomitant lesions were 39% (mild HT+mild AS), 51% (mild HT+mild AR), 46% (mild HT+mild MR), 51% (mild AS+mild AR), 37% (mild AS+mild MR), and 44% (mild AR+mild MR). Power overhead under volume overload increases nonlinearly while that for pressure overload is linear. Concomitant lesions involving pressure (and volume?) overload produce a net overhead rate greater than the sum of individual lesions. Synergy in overhead rates is most with the presence of uncontrolled HT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700