A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste
详细信息    查看全文
  • 作者:Céline Gautier ; Christèle Colin…
  • 关键词:63Ni ; Radiochemical analysis ; Liquid scintillation counting ; Decommissioning ; Radioactive waste ; Dimethylglyoxime
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:308
  • 期:1
  • 页码:261-270
  • 全文大小:755 KB
  • 参考文献:1.ANDRA, National Radioactive Waste Management Agency (2014) ACO.SP.ASRE.99.0002D ANDRA specifications. Accessed 5 June 2015
    2.Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139CrossRef
    3.Hoeppener-Kramar U, Pimpl M, Willmann F (1997) Application of procedures for low level radionuclide analysis in environmental monitoring for the purpose of clearance measurements of materials from decommissioning of nuclear facilities. J Radioanal Nucl Chem 226:99–103CrossRef
    4.Lee CH, Lee MH, Ha YK, Song KS (2011) Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples. J Radioanal Nucl Chem 288:319–325CrossRef
    5.Lee CH, Choi KS, Song BC, Ha YK, Song K (2013) Rapid separation of nickel for 59Ni and 63Ni activity measurement in radioactive waste samples. J Radioanal Nucl Chem 298:1221–1226CrossRef
    6.Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307CrossRef
    7.Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48CrossRef
    8.Poletiko C (1988) Determination of nickel-63. Environ Int 14:387–390CrossRef
    9.Numajiri M, Oki Y, Suzuki T, Miura T, Taira M, Kanda Y, Kondo K (1994) Estimation of nickel-63 in steel and copper activated at high-energy accelerator facilities. Appl Radiat Isot 45:509–514CrossRef
    10.Scheuerer C, Schupfner R, Schottelkopf H (1995) A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete. J Radioanal Nucl Chem 193:127–131CrossRef
    11.Shizuma K, Iwatani K, Hasai H, Oka T, Hoshi M, Shibata S, Imamura M, Shibata T (1997) Identification of 63Ni and 60Co produced in a steel sample by thermal neutrons from the Hiroshima atomic bomb. Nucl Instrum Methods Phys Res, Sect A 384:375–379CrossRef
    12.Rosskopfova O, Galambo M, Rajec P (2011) Determination of 63Ni in low level solid radioactive waste. J Radioanal Nucl Chem 289:251–256CrossRef
    13.Taddei MHT, Macacini JF, Vicente R, Marumo JT, Sakata SK, Terremoto LAA (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55CrossRef
    14.Kaye JH, Strebin RS, Nevissi AE (1994) Measurement of 63Ni in highly radioactive Hanford waste by liquid scintillation couting. J Radioanal Nucl Chem 180:197–200CrossRef
    15.Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285CrossRef
    16.Jordan N, Michel H, Barci-Funel G, Barci V (2008) Radiochemical procedure and quantitative determination of the activation product, 63Ni, in environmental soft water samples with high Ca and Mg phosphate concentration. J Radioanal Nucl Chem 275:253–256CrossRef
    17.Remenec B, Dulanska S, Matel L (2013) Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice. J Radioanal Nucl Chem 298:1879–1884CrossRef
    18.Holm E, Rots P, Skwarzec B (1992) Radioanalytical Studies of Fallout 63Ni. Appl Radiat Isot 43:371–376CrossRef
    19.Laboratoire National Henri Becquerel (2005) Table de radionucléides—63Ni
    20.Yonezawa C, Sagawa T, Hoshi M, Tachikama E (1983) Rapid determination of specific activity of nickel-63. J Radioanal Nucl Chem 78:7–14CrossRef
    21.AFNOR Standard NF M60-317 (2001) Nuclear energy—nuclear fuel technology—waste—determination of nickel 63 in effluents and waste by liquid scintillation after a preliminary chemical extraction. Association Française de Normalisation, Paris, France
    22.European Chemicals Agency (2012) Guidance for the implementation of REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals). Accessed 5 June 2015
    23.Rajkovich S, Cahill D, Peedin L, Wheland S, Lardy M (1996) 2 case studies using Eichrom’s Nickel resin: a nuclear power plant and a commercial laboratory. Eichrom Cincinnati Users’ Seminar, USA. Accessed 5 June 2015
    24.Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78CrossRef
    25.Gautier C, Coppo M, Caussignac C, Fichet P, Goutelard F (2013) Zr and U determination at trace level in simulated deep groundwater by Q ICP-MS using extraction chromatography. Talanta 106:1–7CrossRef
    26.Eichrom Technologies, Inc. (2003) Analytical procedures NIW01, nickel 63/59 in water, Feb 25
    27.Fisera O, Sebesta F (2010) Determination of 59Ni in radioactive waste. J Radioanal Nucl Chem 286:713–717CrossRef
    28.Smith RM, Martell AE (1973) In critical stability constants, Plenum Press, New York
    29.International Atomic Energy Agency (2009) Determination and use of scaling factors for waste characterization in nuclear power plants. AIEA, Nuclear Energy Series NW-T-1.18
    30.Fréchou C, Degros JP (2006) Radiological inventory of irradiated graphite samples. J Radioanal Nucl Chem 273:677–681CrossRef
    31.Banford AW, Eccles H, Graves MJ, von Lensa W, Norris S (2008) Carbowaste—an integrated approach to irradiated graphite. Nucl Future 4:1–5
    32.AFNOR Standard NF M60-323 (2011) Nuclear energy—nuclear fuel cycle technology—waste—guide for pre-analysis dissolution of effluents, waste and embedding matrices. Association Française de Normalisation, Paris, France
    33.AFNOR Standard NF M60-322 (2005) Nuclear energy—nuclear fuel cycle technology—waste—determination of iron 55 activity in effluents and waste by liquid scintillation after prior chemical separation
    34.Marczenko Z, Balcerzak M (2000) In: separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier, Amsterdam
    35.Zelenin OY (2007) Interaction of the Ni2+ ion with citric acid in an aqueous solution. Russ J Coord Chem 33:346–350CrossRef
    36.Dyrssen D, Krašovek F, Sillén LG (1959) On the complex formation of nickel with dimethylglyoxime. Acta Chem Scand 13:50–59CrossRef
    37.Standard NF EN ISO/CEI 17043 (2010) General requirements for proficiency testing. Association Française de Normalisation, Paris, France
  • 作者单位:Céline Gautier (1)
    Christèle Colin (1)
    Cécile Garcia (1)

    1. CEA Saclay, DEN/DANS/DPC/SEARS/LASE, F-91191, Gif-sur-Yvette Cedex, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
A comparative study using liquid scintillation counting was performed to measure 63Ni in low and intermediate level radioactive waste. Three dimethylglyoxime (DMG)-based radiochemical procedures (solvent extraction, precipitation, extraction chromatography) were investigated, the solvent extraction method being considered as the reference method. Theoretical speciation calculations enabled to better understand the chemical reactions involved in the three protocols and to optimize them. In comparison to the method based on DMG precipitation, the method based on extraction chromatography allowed to achieve the best results in one single step in term of recovery yield and accuracy for various samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700