pH-dependent magnetic phase transition of iron oxide nanoparticles synthesized by gamma-radiation reduction method
详细信息    查看全文
  • 作者:Alam Abedini (1)
    Abdul Razak Daud (1)
    Muhammad Azmi Abdul Hamid (1)
    Norinsan Kamil Othman (1)
  • 关键词:Iron oxide nanoparticles ; Gamma ; radiation reduction method ; pH value ; Magnetic phase transition
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:301
  • 期:2
  • 页码:399-407
  • 全文大小:1,493 KB
  • 参考文献:1. Briggs RW, Wu Z, Mladinich CR, Stoupis C, Gauger J, Liebig T, Ros PR, Ballinger J, Kubilis P (1997) In vivo animal tests of an artifact-free contrast agent for gastrointestinal MRI. Magn Reson Imaging 15(5):559-66 CrossRef
    2. Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3):867-72 CrossRef
    3. Zech N, Podlaha E, Landolt D (1998) Rotating cylinder Hull cell study of anomalous codeposition of binary iron-group alloys. J Appl Electrochem 28(11):1251-260 CrossRef
    4. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102-09 CrossRef
    5. Abbas M, Rao BP, Naga S, Takahashi M, Kim C (2013) Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction-surfactantless polyol process. Ceram Int 39:7605-611 CrossRef
    6. Ozkaya T, Toprak MS, Baykal A, Kavas H, K?seo?lu Y, Akta? B (2009) Synthesis of Fe3O4 nanoparticles at 100° C and its magnetic characterization. J Alloy Compd 472(1):18-3 CrossRef
    7. Sohn B, Cohen R, Papaefthymiou G (1998) Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. J Magn Magn Mater 182(1):216-24 CrossRef
    8. Finkelstein G, Glicofridis P, Ashoori R, Shayegan M (2000) Topographic mapping of the quantum Hall liquid using a few-electron bubble. Science 289(5476):90-4 CrossRef
    9. Eid M (2013) Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 20(3):1-1 CrossRef
    10. Kinoshita T, Seino S, Mizukoshi Y, Otome Y, Nakagawa T, Okitsu K, Yamamoto TA (2005) Magnetic separation of amino acids by gold/iron-oxide composite nanoparticles synthesized by gamma-ray irradiation. J Magn Magn Mater 293(1):106-10 CrossRef
    11. Wang S, Xin H, Qian Y (1997) Preparation of nanocrystalline Fe3O4 by γ-ray radiation. Mater Lett 33(1):113-16 CrossRef
    12. Oh S-D, Kim M-R, Choi S-H, Chun J-H, Lee K-P, Gopalan A, Hwang C-G, Sang-Ho K, Hoon OJ (2008) Radiolytic synthesis of Pd–M (M?=?Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14(5):687-92 CrossRef
    13. Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8(1):474 CrossRef
    14. Le Ca?r S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3(1):235-53 CrossRef
    15. Abedini A, Larki F, Saion E, Zakaria A, Zobir Hussein M (2012) Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters. Rad Phys Chem 81(10):1653-658 CrossRef
    16. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N (2012) Room temperature radiolytic synthesized Cu@ CuAlO2–Al2O3 nanoparticles. Int J Mol Sci 13(9):11941-1953 CrossRef
    17. Yh N, Xw G, Zhang Z, Ye Q (2002) Fabrication and characterization of the plate-shaped gamma-Fe2O3 nanocrustals [J]. Chem Mater 14(3):1048-052 CrossRef
    18. Joshi S, Patil S, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10(7):1135-144 CrossRef
    19. Roy S (2008) Nanostructured PZT synthesized from metal–polyvinyl alcohol gel: studies on metal–polymer interaction. J Appl Polym Sci 110(5):2693-697 CrossRef
    20. Zhang S-J, Yu H-Q (2004) Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res 38(2):309-16 CrossRef
    21. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S (2010) Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 6(2):e12 CrossRef
    22. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28(4):539-48 CrossRef
    23. Labidi N, Djebaili A (2008) Studies of the mechanism of polyvinyl alcohol adsorption on the calcite/water interface in the presence of sodium oleate. J Minerals Mater Charac Eng 7(2):147-61
    24. Kayal S, Ramanujan R (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng, C 30(3):484-90 CrossRef
    25. Saeed R, Masood S, Uddin F (2008) Ionic interaction of electrolyte with dilute solution of poly (vinyl alcohol) at different temperatures. Phys Chem Liq 46(1):9-7 CrossRef
    26. Prosanov IY, Bulina N, Gerasimov K (2013) Complexes of polyvinyl alcohol with insoluble inorganic compounds. Phys Solid State 55(10):2132-135 CrossRef
    27. Ushakov S (1960) Polyvinyl alcohol and its derivatives. Izdat Akad Nauk, Moscow-Leningrad, pp 781-90
    28. Yen FS, Chen WC, Yang JM, Hong CT (2002) Crystallite size variations of nanosized Fe2O3 powders during γ-to α-phase transformation. Nano Lett 2(3):245-52 CrossRef
    29. Ibrahim M, Edwards G, Seehra M, Ganguly B, Huffman G (1994) Magnetism and spin dynamics of nanoscale FeOOH particles. J Appl Phys 75(10):5873-875 CrossRef
    30. Musi? S, Krehula S, Popovi? S (2004) Thermal decomposition of β-FeOOH. Mater Lett 58(3):444-48
    31. Gütlich P, Gaspar AB, Garcia Y (2013) Spin state switching in iron coordination compounds. Beilstein J Org Chem 9(1):342-91 CrossRef
    32. Girolami GS, Rauchfuss TB, Angelici RJ (1999) Synthesis and technique in inorganic chemistry: a laboratory manual. University Science Books, Sausalito, CA
    33. Pal S, Dutta P, Shah N, Huffman G, Seehra M (2007) Surface spin disorder in Fe3O4 nanoparticles probed by electron magnetic resonance spectroscopy and magnetometry. Mag IEEE Trans 43(6):3091-093 CrossRef
    34. Song Q, Zhang ZJ (2006) Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals. J Phys Chem B 110(23):11205-1209 CrossRef
    35. Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J, Gao H (2005) Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. J Phys Chem B 109(49):23233-3236 CrossRef
    36. Ghose SK, Waychunas GA, Trainor TP, Eng PJ (2010) Hydrated goethite (α-FeOOH)(100) interface structure: ordered water and surface functional groups. Geochim Cosmochim Acta 74(7):1943-953 CrossRef
    37. Gubin SP (2009) Magnetic nanoparticles. Wiley. com
    38. Sigel A, Sigel H (1999) Metal ions in biological systems: volume 36: Interrelations between free radicals and metal ions in life processes, vol 36. CRC Press, Boca Raton, FL, USA
    39. Evans FB (2006) Magnetic characteristics of carboniferous continental depositional systems: implications for the recognition of depositional hiatuses. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
    40. Kelso PR, Tikoff B, Jackson M, Sun W (2002) A new method for the separation of paramagnetic and ferromagnetic susceptibility anisotropy using low field and high field methods. Geophys J Int 151(2):345-59 CrossRef
  • 作者单位:Alam Abedini (1)
    Abdul Razak Daud (1)
    Muhammad Azmi Abdul Hamid (1)
    Norinsan Kamil Othman (1)

    1. Faculty of Science and Technology, School of Applied Physics, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • ISSN:1588-2780
文摘
In this study, the influence of pH variation on structural and magnetic phase transition of gamma radiolytic synthesized iron oxide nanoparticles is investigated. The structure and magnetic properties of irradiated samples are characterized using X-ray diffraction, Fourier transfer infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. It was found that, in acidic irradiated solution, Fe3+ ions make various complexes with polyvinyl alcohol and water molecules which exhibit a multiphase magnetic property as a mixture of dia and paramagnetic materials. On the other hand, in basic condition, rate of radiation induced reduction of Fe3+ ions increased which leads to the formation of superparamagnetic Fe3O4 nanoparticles. By increasing pH value, in strong basic condition, the tendency of paramagnetic iron (III) oxy-hydroxide formation was high compared to other phases. This variation in the magnetic properties was explained based on iron ions reduction mechanism and the variation of the ligands-properties during formation of nanoparticles under irradiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700