Radiolytic formation of highly luminescent triangular Ag nanocolloids
详细信息    查看全文
  • 作者:Alam Abedini ; P. Susthitha Menon…
  • 关键词:Radiolytic reduction ; Shape transition ; Triangular silver nanoparticles ; Luminescent colloids
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:307
  • 期:2
  • 页码:985-991
  • 全文大小:1,213 KB
  • 参考文献:1.Sreekumaran Nair A, Suryanarayanan V, Pradeep T, Thomas J, Anija M et al (2005) AuxAgy@ ZrO2 core–shell nanoparticles: synthesis, characterization, reactivity and optical limiting. Mat Sci Eng B 117:173–182CrossRef
    2.Smitha S, Nissamudeen K, Philip D, Gopchandran K (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 71:186–190CrossRef
    3.Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRef
    4.He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786CrossRef
    5.Ma W, Yang H, Wang W, Gao P, Yao J (2011) Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11:8643–8653CrossRef
    6.Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y et al (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036CrossRef
    7.Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399CrossRef
    8.Mafuné F, J-y Kohno, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRef
    9.Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15:948–951CrossRef
    10.Krklješ A (2011) Radiolytic synthesis of nanocomposites based on noble metal nanoparticles and natural polymer, and their application as biomaterial. Radiation curing of composites for enhancing the features and utility in health care and industry 128. Cairo, Egypt
    11.Temgire M, Bellare J, Joshi S (2011) Gamma radiolytic formation of alloyed Ag–Pt nanocolloids. Adv Phys Chem. doi:10.​1155/​2011/​249097
    12.Kharisov BI, Kharissova OV, Méndez UO (2013) Radiation synthesis of materials and compounds. CRC, Boca RatonCrossRef
    13.Henglein A (1995) Electronics of colloidal nanometer particles. Berichte der Bunsengesellschaft für physikalische Chemie 99:903–913CrossRef
    14.Saion E, Gharibshahi E, Naghavi K (2013) Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. Int J Mol Sci 14:7880–7896CrossRef
    15.Abedini A, Larki F, Saion E, Zakaria A, Zobir Hussein M (2012) Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters. Radiat Phys Chem 81:1653–1658CrossRef
    16.Somasundaran P (2006) Encyclopedia of surface and colloid science. CRC, Boca Raton
    17.Abedini A, Larki F, Saion EB, Zakaria A, Hussein MZ (2012) Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system. J Radioanal Nucl Chem 292:361–366CrossRef
    18.Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8:1–10CrossRef
    19.Liu C, Yang X, Yuan H, Zhou Z, Xiao D (2007) Preparation of silver nanoparticle and its application to the determination of ct-DNA. Sensors 7:708–718CrossRef
    20.Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRef
    21.Kaur P, Chudasama B (2014) Single step synthesis of pluronic stabilized IR responsive gold nanoplates. RSC Adv 4:36006–36011CrossRef
    22.Ghosh T, Satpati B, Senapati D (2014) Characterization of bimetallic core–shell nanorings synthesized via ascorbic acid-controlled galvanic displacement followed by epitaxial growth. J Mater Chem C 2:2439–2447CrossRef
    23.Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320CrossRef
    24.Zhao J (2008) Resonant localized surface plasmon resonance spectroscopy: fundamentals and applications. ProQuest, Ann Arbor
    25.Kvítek O, Siegel J, Hnatowicz V, Švorčík V (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:111CrossRef
    26.He X, Zhao X, Chen Y, Feng J (2008) The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB. Mater Charact 59:380–384CrossRef
    27.Xue C (2007) Metal nanoprisms: synthesis, optical properties, and assembly. ProQuest, Ann Arbor
    28.Jiang X, Chen C, Chen W, Yu A (2009) Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26:4400–4408CrossRef
    29.Yeshchenko OA, Dmitruk IM, Alexeenko AA, Losytskyy MY, Kotko AV et al (2009) Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys Rev B 79:235438CrossRef
    30.Mertens H, Polman A (2009) Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes. J Appl Phys 105:044302CrossRef
    31.Lin C-AJ, Lee C-H, Hsieh J-T, Wang H-H, Li JK et al (2009) Review: synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 29:276–283
  • 作者单位:Alam Abedini (1)
    P. Susthitha Menon (1)
    Abdul Razak Daud (2)
    Muhammad Azmi Abdul Hamid (2)
    Sahbudin Shaari (1)

    1. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, D.E., Malaysia
    2. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, D.E., Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
In this work, luminescent triangular silver nanoparticles were synthesized by radiolytic reduction method. The results showed that by variation of irradiation dose, morphology of silver nanoparticles can be converted from spherical to triangular. These shape variations mainly arise from competition between adsorption rate of polymer chains on (111) facets and reduction rate of the Ag+ ions along (110) facets during increasing dose. Furthermore, the dramatically enhanced photoluminescence spectra were observed from triangular Ag nanoparticles. This unusual behavior can be explained by excitation of dipolar and quadrupolar resonance in triangular nanoparticles which increase the electric fields at the surface. Keywords Radiolytic reduction Shape transition Triangular silver nanoparticles Luminescent colloids

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700