Effect of organic stabilizers on Pt–Cu nanoparticle structure in liquid-phase syntheses: control of crystal growth and copper reoxidation
详细信息    查看全文
  • 作者:Junichiro Kugai ; Emiko Dodo ; Satoshi Seino…
  • 关键词:Radiolytic synthesis ; Alcohol reduction ; Reduction enhancer ; Stabilizer ; Pt–Cu nanoparticles ; Colloids
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:1,375 KB
  • 参考文献:Aiken Iii JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44. doi:10.​1016/​S1381-1169(99)00098-9 CrossRef
    Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037. doi:10.​1021/​ja0495819 CrossRef
    Daimon H, Onodera T, Honda Y, Nitani H, Seino S, Nakagawa T, Yamamoto TA (2008) Activity and durability of PtRuP catalysts and their atomic structures. ECS Trans 11:93–100. doi:10.​1149/​1.​2992497 CrossRef
    Finke RG, Özkar S (2004) Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C3 symmetry, lattice size-matching binding model. Coord Chem Rev 248:135–146. doi:10.​1016/​j.​cct.​2003.​08.​003 CrossRef
    Guo R, Murray RW (2005) Substituent effects on redox potentials and optical gap energies of molecule-like Au38(SPhX)24 nanoparticles. J Am Chem Soc 127:12140–12143. doi:10.​1021/​ja053119m CrossRef
    Guo JW, Zhao TS, Prabhuram J, Wong CW (2005a) Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochim Acta 50:1973–1983. doi:10.​1016/​j.​electacta.​2004.​09.​006 CrossRef
    Guo R, Song Y, Wang G, Murray RW (2005b) Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc 127:2752–2757. doi:10.​1021/​ja044638c CrossRef
    Henglein A, Giersig M (2000) Reduction of Pt(II) by H2: effects of citrate and NaOH and reaction mechanism. J Phys Chem B 104:6767–6772. doi:10.​1021/​jp000801o CrossRef
    Kageyama S, Seino S, Nakagawa T, Nitani H, Ueno K, Daimon H, Yamamoto TA (2011) Formation of PtRu alloy nanoparticle catalyst by radiolytic process assisted by addition of dl-tartaric acid and its enhanced methanol oxidation activity. J Nanopart Res 13:5275–5287. doi:10.​1007/​s11051-011-0513-x CrossRef
    Kobayashi Y, Shirochi T, Yasuda Y, Morita T (2011) Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties. Solid State Sci 13:553–558. doi:10.​1016/​j.​solidstatescienc​es.​2010.​12.​025 CrossRef
    Kugai J, Kubota C, Okazaki T, Seino S, Nakagawa T, Nitani H, Yamamoto T (2015) Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt–Cu nanoparticles and their structural and electrochemical properties. J Nanopart Res 17:239. doi:10.​1007/​s11051-015-3048-8 CrossRef
    Lin CS, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299:678–685. doi:10.​1016/​j.​jcis.​2006.​03.​003 CrossRef
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: poisoning effects and product analysis. Electrochim Acta 51:1085–1090. doi:10.​1016/​j.​electacta.​2005.​06.​002 CrossRef
    McClary FA, Gaye-Campbell S, Hai Ting AY, Mitchell JW (2013) Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers. J Nanopart Res 15:1142. doi:10.​1007/​s11051-013-1442-7
    Parker JF, Kacprzak KA, Lopez-Acevedo O, Häkkinen H, Murray RW (2010) Experimental and density functional theory analysis of serial introductions of electron-withdrawing ligands into the ligand shell of a thiolate-protected Au25 nanoparticle. J Phys Chem C 114:8276–8281. doi:10.​1021/​jp101265v CrossRef
    Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320. doi:10.​1021/​jp981030f CrossRef
    Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A 372:172–176. doi:10.​1016/​j.​colsurfa.​2010.​10.​013 CrossRef
    Ren L, Xing YC (2008) Effect of pH on PtRu electrocatalysts prepared via a polyol process on carbon nanotubes. Electrochim Acta 53:5563–5568. doi:10.​1016/​j.​electacta.​2008.​02.​109 CrossRef
    Sadtler B, Wei A (2002) Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects. Chem Commun 15:1604–1605. doi:10.​1039/​B204760H CrossRef
    Santhanalakshmi J, Parimala L (2012) The copper nanoparticles catalysed reduction of substituted nitrobenzenes: effect of nanoparticle stabilizers. J Nanopart Res 14:1090. doi:10.​1007/​s11051-012-1090-3 CrossRef
    Shin J, Kim Y, Lee K, Lim YM, Nho YC (2008) Significant effects of sodium acetate, an impurity present in poly(vinyl alcohol) solution on the radiolytic formation of silver nanoparticle. Radiat Phys Chem 77:871–876. doi:10.​1016/​j.​radphyschem.​2007.​12.​006 CrossRef
    Silva DF, Neto AO, Pino ES, Linardi M, Spinacé EV (2010) Preparation of PtSn/C electrocatalysts using electron beam irradiation. Mater Res 10:367–370. doi:10.​1016/​S0167-2991(10)75107-7 CrossRef
    Soroushian B, Lampre I, Belloni J, Mostafavi M (2005) Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiat Phys Chem 72:111–118. doi:10.​1016/​j.​radphyschem.​2004.​02.​009 CrossRef
    Xu Y, Xie X, Guo J, Wang S, Wang Y, Mathur VK (2006) Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst. J Power Sources 162:132–140. doi:10.​1016/​j.​jpowsour.​2006.​07.​021 CrossRef
    Zhang F, Chen J, Zhang X, Gao W, Jin R, Guan N, Li Y (2004) Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition. Langmuir 20:9329–9334. doi:10.​1021/​la049394o CrossRef
  • 作者单位:Junichiro Kugai (1) (2)
    Emiko Dodo (2)
    Satoshi Seino (1)
    Takashi Nakagawa (1)
    Tomohisa Okazaki (1)
    Takao A. Yamamoto (1)

    1. Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
    2. Department of Applied Chemistry, Kobe City College of Technology, 8-3 Gakuen-higashimachi, Nishi-ku Kobe, Hyogo, 651-2194, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700