Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis
详细信息    查看全文
  • 作者:Thomas Fleischer (1) (2)
    Arnoldo Frigessi (3)
    Kevin C Johnson (4) (5)
    Hege Edvardsen (1)
    Nizar Touleimat (6)
    Jovana Klajic (1) (2) (7)
    Margit LH Riis (7) (8) (9)
    Vilde D Haakensen (1) (2)
    Fredrik W盲rnberg (10)
    Bj酶rn Naume (11)
    脜slaug Helland (1) (11)
    Anne-Lise B酶rresen-Dale (1) (2)
    J枚rg Tost (6)
    Brock C Christensen (4) (5)
    Vessela N Kristensen (1) (2) (7)

    1. Department of Genetics
    ; Institute for Cancer Research ; OUS Radiumhospitalet ; Montebello ; 0310 ; Oslo ; Norway
    2. The K.G. Jebsen Center for Breast Cancer Research
    ; Institute for Clinical Medicine ; Faculty of Medicine ; University of Oslo ; 0318 ; Oslo ; Norway
    3. Oslo Centre for Biostatistics and Epidemiology
    ; Department of Biostatistics ; University of Oslo and Research Support Services ; Oslo University Hospital ; 0424 ; Oslo ; Norway
    4. Department of Community and Family Medicine
    ; Section of Biostatistics and Epidemiology ; Geisel School of Medicine at Dartmouth ; Hanover ; NH ; 03755-1404 ; USA
    5. Department of Pharmacology and Toxicology
    ; Geisel School of Medicine at Dartmouth ; Hanover ; NH ; 03755-1404 ; USA
    6. Institut de G茅nomique
    ; Laboratory for Epigenetics and Environment ; Centre National de G茅notypage ; CEA ; 91000 ; Evry ; France
    7. Department of Clinical Molecular Biology and Laboratory Science (EpiGen)
    ; Division of Medicine ; Akershus University hospital ; 1476 ; L酶renskog ; Norway
    8. Department of Surgery
    ; Akershus University Hospital ; 1478 ; L酶renskog ; Norway
    9. Department of Breast and Endocrine Surgery
    ; Oslo University Hospital ; Ullev氓l ; 0450 ; Oslo ; Norway
    10. Department of Surgery
    ; Uppsala Academic Hospital ; Uppsala University ; Uppsala ; SE-75185 ; Sweden
    11. Department of Oncology
    ; Oslo University Hospital Radiumhospitalet ; 0379 ; Oslo ; Norway
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:15
  • 期:8
  • 全文大小:2,730 KB
  • 参考文献:1. Herman, JG, Baylin, SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: pp. 2042-2054 CrossRef
    2. Esteller, M (2008) Epigenetics in cancer. N Engl J Med 358: pp. 1148-1159 CrossRef
    3. Feinberg, AP, Irizarry, RA (2010) Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A 107: pp. 1757-1764 CrossRef
    4. Hansen, KD, Timp, W, Bravo, HC, Sabunciyan, S, Langmead, B, McDonald, OG, Wen, B, Wu, H, Liu, Y, Diep, D, Briem, E, Zhang, K, Irizarry, RA, Feinberg, AP (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43: pp. 768-775 CrossRef
    5. Bediaga, NG, Acha-Sagredo, A, Guerra, I, Viguri, A, Albaina, C, Ruiz, DI, Rezola, R, Alberdi, MJ, Dopazo, J, Montaner, D, Renobales, M, Fernandez, AF, Field, JK, Fraga, MF, Liloglou, T, Pancorbo, MM (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12: pp. R77 CrossRef
    6. Holm, K, Hegardt, C, Staaf, J, Vallon-Christersson, J, Jonsson, G, Olsson, H, Borg, A, Ringner, M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12: pp. R36 CrossRef
    7. Kamalakaran, S, Varadan, V, Giercksky Russnes, HE, Levy, D, Kendall, J, Janevski, A, Riggs, M, Banerjee, N, Synnestvedt, M, Schlichting, E, Karesen, R, Shama, PK, Rotti, H, Rao, R, Rao, L, Eric Tang, MH, Satyamoorthy, K, Lucito, R, Wigler, M, Dimitrova, N, Naume, B, Borresen-Dale, AL, Hicks, JB (2011) DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol 5: pp. 77-92 CrossRef
    8. Ronneberg, JA, Fleischer, T, Solvang, HK, Nordgard, SH, Edvardsen, H, Potapenko, I, Nebdal, D, Daviaud, C, Gut, I, Bukholm, I, Naume, B, Borresen-Dale, AL, Tost, J, Kristensen, V (2011) Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 5: pp. 61-76 CrossRef
    Comprehensive molecular portraits of human breast tumours. Nature 490: pp. 61-70 CrossRef
    9. Bijker, N, Meijnen, P, Peterse, JL, Bogaerts, J, Van, HI, Julien, JP, Gennaro, M, Rouanet, P, Avril, A, Fentiman, IS, Bartelink, H, Rutgers, EJ (2006) Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853鈥揳 study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Grou. J Clin Oncol 24: pp. 3381-3387 CrossRef
    10. Pang, JM, Dobrovic, A, Fox, SB (2013) DNA methylation in ductal carcinoma in situ of the breast. Breast Cancer Res 15: pp. 206 CrossRef
    11. Verschuur-Maes, AH, Bruin, PC, Diest, PJ (2012) Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer. Breast Cancer Res Treat 136: pp. 705-715 CrossRef
    12. Hoesel, AQ, Sato, Y, Elashoff, DA, Turner, RR, Giuliano, AE, Shamonki, JM, Kuppen, PJ, Velde, CJ, Hoon, DS (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108: pp. 2033-2038 CrossRef
    13. Tommasi, S, Karm, DL, Wu, X, Yen, Y, Pfeifer, GP (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11: pp. R14 CrossRef
    14. Faryna, M, Konermann, C, Aulmann, S, Bermejo, JL, Brugger, M, Diederichs, S, Rom, J, Weichenhan, D, Claus, R, Rehli, M, Schirmacher, P, Sinn, HP, Plass, C, Gerhauser, C (2012) Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J 26: pp. 4937-4950 CrossRef
    15. Kishida, Y, Natsume, A, Kondo, Y, Takeuchi, I, An, B, Okamoto, Y, Shinjo, K, Saito, K, Ando, H, Ohka, F, Sekido, Y, Wakabayashi, T (2012) Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis 33: pp. 436-441 CrossRef
    16. Gao, F, Shi, L, Russin, J, Zeng, L, Chang, X, He, S, Chen, TC, Giannotta, SL, Weisenberger, DJ, Zada, G, Mack, WJ, Wang, K (2013) DNA methylation in the malignant transformation of meningiomas. PLoS One 8: pp. e54114 CrossRef
    17. Kang, GH, Shim, YH, Jung, HY, Kim, WH, Ro, JY, Rhyu, MG (2001) CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 61: pp. 2847-2851
    18. Kang, GH, Lee, S, Kim, JS, Jung, HY (2003) Profile of aberrant CpG island methylation along multistep gastric carcinogenesis. Lab Invest 83: pp. 519-526 CrossRef
    19. Bhagat, R, Chadaga, S, Premalata, CS, Ramesh, G, Ramesh, C, Pallavi, VR, Krishnamoorthy, L (2012) Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol (Dordr) 35: pp. 473-479 CrossRef
    20. Yamamoto, E, Suzuki, H, Yamano, HO, Maruyama, R, Nojima, M, Kamimae, S, Sawada, T, Ashida, M, Yoshikawa, K, Kimura, T, Takagi, R, Harada, T, Suzuki, R, Sato, A, Kai, M, Sasaki, Y, Tokino, T, Sugai, T, Imai, K, Shinomura, Y, Toyota, M (2012) Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype. Am J Pathol 181: pp. 1847-1861 CrossRef
    21. Luo, Y, Wong, CJ, Kaz, AM, Dzieciatkowski, S, Carter, KT, Morris, SM, Wang, J, Willis, JE, Makar, KW, Ulrich, CM, Lutterbaugh, JD, Shrubsole, MJ, Zheng, W, Markowitz, SD, Grady, WM (2014) Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology 147: pp. 418-429 CrossRef
    22. Navarro, A, Yin, P, Monsivais, D, Lin, SM, Du, P, Wei, JJ, Bulun, SE (2012) Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One 7: pp. e33284 CrossRef
    23. Maekawa, R, Sato, S, Yamagata, Y, Asada, H, Tamura, I, Lee, L, Okada, M, Tamura, H, Takaki, E, Nakai, A, Sugino, N (2013) Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One 8: pp. e66632 CrossRef
    24. Kulis, M, Heath, S, Bibikova, M, Queiros, AC, Navarro, A, Clot, G, Martinez-Trillos, A, Castellano, G, Brun-Heath, I, Pinyol, M, Barberan-Soler, S, Papasaikas, P, Jares, P, Bea, S, Rico, D, Ecker, S, Rubio, M, Royo, R, Ho, V, Klotzle, B, Hernandez, L, Conde, L, Lopez-Guerra, M, Colomer, D, Villamor, N, Aymerich, M, Rozman, M, Bayes, M, Gut, M, Gelpi, JL (2012) Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 44: pp. 1236-1242 CrossRef
    25. Maunakea, AK, Nagarajan, RP, Bilenky, M, Ballinger, TJ, D鈥橲ouza, C, Fouse, SD, Johnson, BE, Hong, C, Nielsen, C, Zhao, Y, Turecki, G, Delaney, A, Varhol, R, Thiessen, N, Shchors, K, Heine, VM, Rowitch, DH, Xing, X, Fiore, C, Schillebeeckx, M, Jones, SJ, Haussler, D, Marra, MA, Hirst, M, Wang, T, Costello, JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466: pp. 253-257 CrossRef
    26. Bailey, CM, Hendrix, MJ (2008) IRF6 in development and disease: a mediator of quiescence and differentiation. Cell Cycle 7: pp. 1925-1930 CrossRef
    27. Botti, E, Spallone, G, Moretti, F, Marinari, B, Pinetti, V, Galanti, S, Meo, PD, De, NF, Ganci, F, Castrignano, T, Pesole, G, Chimenti, S, Guerrini, L, Fanciulli, M, Blandino, G, Karin, M, Costanzo, A (2011) Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A 108: pp. 13710-13715 CrossRef
    28. Yu, J, Ma, X, Cheung, KF, Li, X, Tian, L, Wang, S, Wu, CW, Wu, WK, He, M, Wang, M, Ng, SS, Sung, JJ (2010) Epigenetic inactivation of T-box transcription factor 5, a novel tumor suppressor gene, is associated with colon cancer. Oncogene 29: pp. 6464-6474 CrossRef
    29. Stevens, KN, Lindstrom, S, Scott, CG, Thompson, D, Sellers, TA, Wang, X, Wang, A, Atkinson, E, Rider, DN, Eckel-Passow, JE, Varghese, JS, Audley, T, Brown, J, Leyland, J, Luben, RN, Warren, RM, Loos, RJ, Wareham, NJ, Li, J, Hall, P, Liu, J, Eriksson, L, Czene, K, Olson, JE, Pankratz, VS, Fredericksen, Z, Diasio, RB, Lee, AM, Heit, JA, DeAndrade, M (2012) Identification of a novel percent mammographic density locus at 12q24. Hum Mol Genet 21: pp. 3299-3305 CrossRef
    30. Tao, T, Shi, H, Guan, Y, Huang, D, Chen, Y, Lane, DP, Chen, J, Peng, J (2013) Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation. Cell Res 23: pp. 620-634 CrossRef
    31. Tsioras, K, Papastefanaki, F, Politis, PK, Matsas, R, Gaitanou, M (2013) Functional interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect Cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 8: pp. e82172 CrossRef
    32. Galcheva-Gargova, Z, Konstantinov, KN, Wu, IH, Klier, FG, Barrett, T, Davis, RJ (1996) Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. Science 272: pp. 1797-1802 CrossRef
    33. Smaele, E, Di, ML, Moretti, M, Pelloni, M, Occhione, MA, Infante, P, Cucchi, D, Greco, A, Pietrosanti, L, Todorovic, J, Coni, S, Canettieri, G, Ferretti, E, Bei, R, Maroder, M, Screpanti, I, Gulino, A (2011) Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia 13: pp. 374-385
    34. Coon, BG, Direnzo, DM, Konieczny, SF, Aguilar, RC (2011) Epsins鈥?novel role in cancer cell invasion. Commun Integr Biol 4: pp. 95-97
    35. Zaoui, K, Benseddik, K, Daou, P, Salaun, D, Badache, A (2010) ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A 107: pp. 18517-18522 CrossRef
    36. Mishra, SK, Yang, Z, Mazumdar, A, Talukder, AH, Larose, L, Kumar, R (2004) Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene 23: pp. 4422-4429 CrossRef
    37. Dedeurwaerder, S, Desmedt, C, Calonne, E, Singhal, SK, Haibe-Kains, B, Defrance, M, Michiels, S, Volkmar, M, Deplus, R, Luciani, J, Lallemand, F, Larsimont, D, Toussaint, J, Haussy, S, Rothe, F, Rouas, G, Metzger, O, Majjaj, S, Saini, K, Putmans, P (2011) Hames G, van BN, Coulie PG, Piccart M, Sotiriou C, Fuks F: DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 3: pp. 726-741 CrossRef
    38. Dowell, JD, Tsai, SC, Dias-Santagata, DC, Nakajima, H, Wang, Z, Zhu, W, Field, LJ (2007) Expression of a mutant p193/CUL7 molecule confers resistance to M. Biochim Biophys Acta 1773: pp. 358-366 CrossRef
    39. Kim, SS, Shago, M, Kaustov, L, Boutros, PC, Clendening, JW, Sheng, Y, Trentin, GA, Barsyte-Lovejoy, D, Mao, DY, Kay, R, Jurisica, I, Arrowsmith, CH, Penn, LZ (2007) CUL7 is a novel antiapoptotic oncogene. Cancer Res 67: pp. 9616-9622 CrossRef
    40. Paradis, V, Albuquerque, M, Mebarki, M, Hernandez, L, Zalinski, S, Quentin, S, Belghiti, J, Soulier, J, Bedossa, P (2013) Cullin7: a new gene involved in liver carcinogenesis related to metabolic syndrome. Gut 62: pp. 911-919 CrossRef
    41. Hiraoka, N, Yamazaki-Itoh, R, Ino, Y, Mizuguchi, Y, Yamada, T, Hirohashi, S, Kanai, Y (2011) CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis. Gastroenterology 140: pp. 310-321 CrossRef
    42. Haakensen, VD, Biong, M, Lingjaerde, OC, Holmen, MM, Frantzen, JO, Chen, Y, Navjord, D, Romundstad, L, Luders, T, Bukholm, IK, Solvang, HK, Kristensen, VN, Ursin, G, Borresen-Dale, AL, Helland, A (2010) Expression levels of uridine 5鈥?diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density. Breast Cancer Res 12: pp. R65 CrossRef
    43. Muggerud, AA, Hallett, M, Johnsen, H, Kleivi, K, Zhou, W, Tahmasebpoor, S, Amini, RM, Botling, J, Borresen-Dale, AL, Sorlie, T, Warnberg, F (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4: pp. 357-368 CrossRef
    44. Muggerud, AA, Ronneberg, JA, Warnberg, F, Botling, J, Busato, F, Jovanovic, J, Solvang, H, Bukholm, I, Borresen-Dale, AL, Kristensen, VN, Sorlie, T, Tost, J (2010) Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 12: pp. R3 CrossRef
    45. Naume, B, Zhao, X, Synnestvedt, M, Borgen, E, Russnes, HG, Lingjaerde, OC, Stromberg, M, Wiedswang, G, Kvalheim, G, Karesen, R, Nesland, JM, Borresen-Dale, AL, Sorlie, T (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1: pp. 160-171 CrossRef
    46. Touleimat, N, Tost, J (2012) Complete pipeline for Infinium((R)) Human Methylation 450聽K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4: pp. 325-341 CrossRef
    47. Enerly, E, Steinfeld, I, Kleivi, K, Leivonen, SK, Aure, MR, Russnes, HG, Ronneberg, JA, Johnsen, H, Navon, R, Rodland, E, Makela, R, Naume, B, Perala, M, Kallioniemi, O, Kristensen, VN, Yakhini, Z, Borresen-Dale, AL (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6: pp. e16915 CrossRef
    48. Tibshirani R, Chu G, Balasubramanian N, Jun L: samr: SAM: Significance Analysis of Microarrays. R package version 2.0. 2011, [http://CRAN.R-project.org/package=samr]
    49. Sun W: eMap: map gene expression qtl. R package version 1.2. 2010, [http://www.bios.unc.edu/~weisun/software/eMap_1.2.tar.gz]
    50. Oosting J, Eilers P, Menezes R: quantsmooth: Quantile smoothing and genomic visualization of array data. R package version 1.26.0. 2012, [http://bioconductor.org/packages/release/bioc/html/quantsmooth.html]
    51. Tibshirani, R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc B, Series B 58: pp. 267-288
    52. Bovelstad, HM, Nygard, S, Storvold, HL, Aldrin, M, Borgan, O, Frigessi, A, Lingjaerde, OC (2007) Predicting survival from microarray data鈥揳 comparative study. Bioinformatics 23: pp. 2080-2087 CrossRef
    53. Friedman, J, Hastie, T, Tibshirani, R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33: pp. 1-22
    54. Therneau T: A Package for Survival Analysis in S. R package version 2.37-4. 2013, [http://CRAN.R-project.org/package=survival]
    55. Morris, T, Butcher, L, Feber, A, Teschendorff, A, Chakravarthty, A, Beck, S (2014) ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30: pp. 428-430 CrossRef
    56. Hastie T, Tibshirani R, Narasimhan BC: pamr: Pam: prediction analysis for microarrays. R package version 1.55. 2014, [http://CRAN.R-project.org/package=pamr]
    57. R Development Core Team: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2014, [http://www.R-project.org/]
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Ductal carcinoma in situ (DCIS) of the breast is a precursor of invasive breast carcinoma. DNA methylation alterations are thought to be an early event in progression of cancer, and may prove valuable as a tool in clinical decision making and for understanding neoplastic development. Results We generate genome-wide DNA methylation profiles of 285 breast tissue samples representing progression of cancer, and validate methylation changes between normal and DCIS in an independent dataset of 15 normal and 40 DCIS samples. We also validate a prognostic signature on 583 breast cancer samples from The Cancer Genome Atlas. Our analysis reveals that DNA methylation profiles of DCIS are radically altered compared to normal breast tissue, involving more than 5,000 genes. Changes between DCIS and invasive breast carcinoma involve around 1,000 genes. In tumors, DNA methylation is associated with gene expression of almost 3,000 genes, including both negative and positive correlations. A prognostic signature based on methylation level of 18 CpGs is associated with survival of breast cancer patients with invasive tumors, as well as with survival of patients with DCIS and mixed lesions of DCIS and invasive breast carcinoma. Conclusions This work demonstrates that changes in the epigenome occur early in the neoplastic progression, provides evidence for the possible utilization of DNA methylation-based markers of progression in the clinic, and highlights the importance of epigenetic changes in carcinogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700