An association between the reduced levels of SLC1A2 and GAD1 in the dorsolateral prefrontal cortex in major depressive disorder: possible involvement of an attenuated RAF/MEK/ERK signaling pathway
详细信息    查看全文
  • 作者:Dong Hoon Oh (1)
    Daeyoung Oh (5)
    Hyeon Son (2)
    Maree J. Webster (3)
    Cyndi S. Weickert (4)
    Seok Hyeon Kim (1)
  • 关键词:Glutamate transporters ; Glutamic acid decarboxylase ; MEK ERK pathway ; Dorsolateral prefrontal cortex ; Major depressive disorder
  • 刊名:Journal of Neural Transmission
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:121
  • 期:7
  • 页码:783-792
  • 全文大小:478 KB
  • 参考文献:1. Alcaro A, Panksepp J, Witczak J, Hayes DJ, Northoff G (2010) Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 34:592-05. doi:10.1016/j.neubiorev.2009.11.023 CrossRef
    2. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329-343. doi:10.1038/sj.cdd.4401662 CrossRef
    3. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501-11. doi:10.1038/mp.2008.106 CrossRef
    4. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5-7. doi:10.1038/sj.bjp.0706949 CrossRef
    5. Bender R, Lange S (2001) Adjusting for multiple —when and how? J Clin Epidemiol 54:343-49. doi:10.1016/S0895-4356(00)00314-0 CrossRef
    6. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 102:15653-5658. doi:10.1073/pnas.0507901102 CrossRef
    7. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science 289:591-94. doi:10.1126/science.289.5479.591 CrossRef
    8. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61:661-70. doi:10.1016/j.biopsych.2006.05.047 CrossRef
    9. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77:916-28. doi:10.1046/j.1471-4159.2001.00300.x CrossRef
    10. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804-15. doi:10.1001/archpsyc.60.8.804 CrossRef
    11. Dwivedi Y, Rizavi HS, Conley RR, Pandey GN (2006) ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 11:86-8. doi:10.1038/sj.mp.4001744 CrossRef
    12. Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, Pandey GN (2009) Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1). Int J Neuropsychopharmacol 12:1337-354. doi:10.1017/S1461145709990575 CrossRef
    13. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 101:12604-2609. doi:10.1073/pnas.0405077101 CrossRef
    14. Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang DM (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43:1173-179. doi:10.1016/S0028-3908(02)00217-4 CrossRef
    15. Higgs BW, Elashoff M, Richman S, Barci B (2006) An online database for brain disease research. BMC Genom 7:70. doi:10.1186/1471-2164-7-70 CrossRef
    16. Hu WH, Walters WM, Xia XM, Karmally SA, Bethea JR (2003) Neuronal glutamate transporter EAAT4 is expressed in astrocytes. Glia 44:13-5. doi:10.1002/glia.10268 CrossRef
    17. Karolewicz B, Maciag D, O’Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G (2010) Reduced level of glutamic acid decarboxylase-67?kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol 13:411-20. doi:10.1017/S1461145709990587 CrossRef
    18. Kim S, Webster MJ (2010) The stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology 35:473-82. doi:10.1038/npp.2009.151 CrossRef
    19. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484-493. doi:10.1002/jcp.22609 CrossRef
    20. Kim S, Zavitsanou K, Gurguis G, Webster MJ (2012) Neuropathology markers and pathways associated with molecular targets for antipsychotic drugs in postmortem brain tissues: exploration of drug targets through the stanley neuropathology integrative database. Eur Neuropsychopharmacol 22:683-94. doi:10.1016/j.euroneuro.2012.01.010 CrossRef
    21. Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201:239-43. doi:10.1016/j.bbr.2009.03.004 CrossRef
    22. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, Lopez JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225-33. doi:10.1016/j.biopsych.2003.09.017 CrossRef
    23. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D’Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M (2006) Roles of the RAF/MEK/ERK and PI3?K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46:249-79. doi:10.1016/j.advenzreg.2006.01.004 CrossRef
    24. Milham MP, Banich MT, Webb A, Barad V, Cohen NJ, Wszalek T, Kramer AF (2001) The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain Res Cogn Brain Res 12:467-73. doi:10.1016/s0926-6410(01)00076-3 CrossRef
    25. Mueller HT, Meador-Woodruff JH (2004) NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71:361-70. doi:10.1016/j.schres.2004.02.016 CrossRef
    26. Oh DH, Son H, Hwang S, Kim SH (2012) Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol 22:330-38. doi:10.1016/j.euroneuro.2011.09.001 CrossRef
    27. Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y (2008) Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol 11:1047-061. doi:10.1017/s1461145708009000 CrossRef
    28. Peyssonnaux C, Eychene A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53-2. doi:10.1016/S0248-4900(01)01125-X CrossRef
    29. Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22-7. doi:10.1038/nrn3138
    30. Qi X, Lin W, Li J, Li H, Wang W, Wang D, Sun M (2008) Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol Dis 31:278-85. doi:10.1016/j.nbd.2008.05.003 CrossRef
    31. Qi H, Mailliet F, Spedding M, Rocher C, Zhang X, Delagrange P, McEwen B, Jay TM, Svenningsson P (2009) Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology 56:37-6. doi:10.1016/j.neuropharm.2008.06.068 CrossRef
    32. Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ (2007) GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropharmacology 32:471-82. doi:10.1038/sj.npp.1301234
    33. Rogers MA, Kasai K, Koji M, Fukuda R, Iwanami A, Nakagome K, Fukuda M, Kato N (2004) Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res 50:1-1. doi:10.1016/j.neures.2004.05.003 CrossRef
    34. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF (2004) Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61:705-13. doi:10.1001/archpsyc.61.7.705 CrossRef
    35. Sanchez-Huertas C, Rico B (2011) CREB-dependent regulation of GAD65 transcription by BDNF/TrkB in cortical interneurons. Cereb Cortex 21:777-88. doi:10.1093/cercor/bhq150 CrossRef
    36. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS ONE 4:e6585. doi:10.1371/journal.pone.0006585 CrossRef
    37. Sibille E, Morris HM, Kota RS, Lewis DA (2011) GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 14:721-34. doi:10.1017/S1461145710001616 CrossRef
    38. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173-83. doi:10.1038/nrn1346 CrossRef
    39. Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 43:970-77. doi:10.1016/j.jpsychires.2009.02.005 CrossRef
    40. Tordera RM, Garcia-Garcia AL, Elizalde N, Segura V, Aso E, Venzala E, Ramirez MJ, Del Rio J (2011) Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 21:23-2. doi:10.1016/j.euroneuro.2010.06.016 CrossRef
    41. Torrey EF, Bowcut JC (2013) SMRI contributions to drug development for schizophrenia and bipolar disorder. Schizophr Bull 39:481-82. doi:10.1093/schbul/sbt039 CrossRef
    42. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH (2000) The stanley foundation brain collection and neuropathology consortium. Schizophr Res 44:151-55. doi:10.1016/S0920-9964(99)00192-9 CrossRef
    43. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935-47. doi:10.1038/nrn2274 CrossRef
    44. Xing G, Chavko M, Zhang LX, Yang S, Post RM (2002) Decreased calcium-dependent constitutive nitric oxide synthase (cNOS) activity in prefrontal cortex in schizophrenia and depression. Schizophr Res 58:21-0. doi:10.1016/S0920-9964(01)00388-7 CrossRef
    45. Xing GQ, Russell S, Webster MJ, Post RM (2004) Decreased expression of mineralocorticoid receptor mRNA in the prefrontal cortex in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 7:143-53. doi:10.1017/s1461145703004000 CrossRef
    46. Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G, Guitart X, Manji HK (2010) Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord 124:164-69. doi:10.1016/j.jad.2009.10.017 CrossRef
    47. Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465-73. doi:10.1016/j.neuropharm.2009.09.005 CrossRef
    48. Zink M, Rapp S, Donev R, Gebicke-Haerter PJ, Thome J (2011) Fluoxetine treatment induces EAAT2 expression in rat brain. J Neural Transm 118:849-55. doi:10.1007/s00702-010-0536-y CrossRef
  • 作者单位:Dong Hoon Oh (1)
    Daeyoung Oh (5)
    Hyeon Son (2)
    Maree J. Webster (3)
    Cyndi S. Weickert (4)
    Seok Hyeon Kim (1)

    1. Department of Psychiatry, College of Medicine and Institute of Mental Health, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
    5. Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
    2. Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
    3. Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
    4. Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
  • ISSN:1435-1463
文摘
Previous human postmortem studies have shown that expression of glutamate transporters (SLC1A2 and SLC1A3) and gamma-aminobutyric acid-synthesizing enzyme [glutamic acid decarboxylase 1 (GAD1)] are reduced in the dorsolateral prefrontal cortex (dlPFC) in subjects with major depressive disorder (MDD). However, no studies have explored the association between these two molecules and its related biological processes in MDD because of limited postmortem sample availability. Data sharing using the Stanley neuropathology consortium integrative database (SNCID), a web-based tool that integrates datasets from the same postmortem brain samples, allowed us to reanalyze existing postmortem data efficiently. We found two datasets where the mRNA levels of GAD1 and SLC1A2 in subregions of the dlPFC were significantly and marginally lower in subjects with MDD (n?=?15) than in controls (n?=?15) (p?=?0.045 and 0.057, respectively). In addition, there was a positive correlation between these two molecules (n?=?30, p?n?=?60, p?mRNA expression and their relation to the attenuation of the RAF/MEK/ERK signaling pathway in the dlPFC in MDD. The integration of the existing archival data may shed light on one important aspect of the pathophysiology of MDD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700