LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance
详细信息    查看全文
  • 作者:Patrick Ziegler ; Steffen Boettcher ; Hitoshi Takizawa…
  • 关键词:Bone marrow stroma cells ; Niche ; Inflammation ; LPS
  • 刊名:Annals of Hematology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:95
  • 期:2
  • 页码:173-178
  • 全文大小:532 KB
  • 参考文献:1.Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336PubMed CrossRef
    2.Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988PubMed CrossRef
    3.Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834PubMed PubMedCentral CrossRef
    4.Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462PubMed PubMedCentral CrossRef
    5.Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230PubMed PubMedCentral CrossRef
    6.Park D, Spencer JA, Koh BI et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272PubMed PubMedCentral CrossRef
    7.Walenda T, Bork S, Horn P et al (2010) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 14:337–350PubMed PubMedCentral CrossRef
    8.Wagner W, Roderburg C, Wein F et al (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells (Dayton, Ohio) 25:2638–2647CrossRef
    9.Kadereit S, Deeds LS, Haynesworth SE et al (2002) Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(−) early progenitors cultured over human MSCs as a feeder layer. Stem Cells (Dayton, Ohio) 20:573–582CrossRef
    10.McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ (2004) Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6:311–317PubMed CrossRef
    11.Robinson SN, Ng J, Niu T et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37:359–366PubMed PubMedCentral CrossRef
    12.Wang X, Cheng Q, Li L et al (2012) Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34(+) cells. Exp Cell Res 318:196–206PubMed CrossRef
    13.Manz MG, Miyamoto T, Akashi K, Weissman IL (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99:11872–11877PubMed PubMedCentral CrossRef
    14.Traggiai E, Chicha L, Mazzucchelli L et al (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science (New York, NY) 304:104–107CrossRef
    15.Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319PubMed PubMedCentral CrossRef
    16.Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMed CrossRef
    17.Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells (Dayton, Ohio) 26:99–107CrossRef
    18.Pevsner-Fischer M, Morad V, Cohen-Sfady M et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109:1422–1432PubMed CrossRef
    19.Liotta F, Angeli R, Cosmi L et al (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells (Dayton, Ohio) 26:279–289CrossRef
    20.Sioud M, Floisand Y, Forfang L, Lund-Johansen F (2006) Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 364:945–954PubMed CrossRef
    21.De Luca K, Frances-Duvert V, Asensio MJ et al (2009) The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23:2063–2074PubMed CrossRef
    22.Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208:273–284PubMed PubMedCentral CrossRef
    23.Li N, Feugier P, Serrurrier B et al (2007) Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Exp Hematol 35:507–515PubMed CrossRef
    24.Fei XM, Wu YJ, Chang Z et al (2007) Co-culture of cord blood CD34(+) cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Cytotherapy 9:338–347PubMed CrossRef
  • 作者单位:Patrick Ziegler (1) (2)
    Steffen Boettcher (2) (3)
    Hitoshi Takizawa (2) (3)
    Markus G. Manz (2) (3)
    Tim H. Brümmendorf (4)

    1. Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
    2. Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
    3. Division of Hematology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
    4. Department of Oncology, Hematology, Hemostaseology and Stem cell transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Hematology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0584
文摘
The nonhematopoietic bone marrow (BM) microenvironment provides a functional niche for hematopoietic cell maintenance, recruitment, and differentiation. It consists of multiple cell types including vasculature, bone, adipose tissue, and fibroblast-like bone marrow stromal cells (BMSC), which can be summarized under the generic term niche cells. BMSC express Toll-like receptors (TLRs) and are capable to respond to TLR-agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis. Here, we show that in addition to enhanced myeloid colony formation from human CD34+ cells, lipopolysaccharide (LPS) stimulation retains overall higher numbers of CD34+ cells in co-culture assays using BMSC, with eightfold more CD34+ cells that underwent up to three divisions as compared to non-stimulated assays. When subjected to cytokine-supplemented myeloid colony-forming unit (CFU) assays or transplanted into newborn RAG2−/− γc −/− mice, CD34+ cells from LPS-stimulated BMSC cultures give rise to the full spectrum of myeloid colonies and T and B cells, respectively, thus supporting maintenance of myeloid and lymphoid primed hematopoietic progenitor cells (HPCs) under inflammatory conditions. Collectively, we suggest that BMSC enhance hematopoiesis during inflammatory conditions to support the replenishment of innate immune effector cells and to prevent the exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700