The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers
详细信息    查看全文
  • 作者:SHI YING YANG (1) (2) (3)
    RACHIT K. SAXENA (4)
    PAWAN L. KULWAL (5)
    GAVIN J. ASH (2)
    ANUJA DUBEY (4) (6)
    JOHN D. I. HARPER (2)
    HARI D. UPADHYAYA (4)
    RAGINI GOTHALWAL (6)
    ANDRZEJ KILIAN (1)
    RAJEEV K. VARSHNEY (4) (7)
  • 关键词:DArT ; genetic mapping ; molecular markers ; pigeon pea
  • 刊名:Journal of Genetics
  • 出版年:2011
  • 出版时间:April 2011
  • 年:2011
  • 卷:90
  • 期:1
  • 页码:103-109
  • 全文大小:619KB
  • 参考文献:1. Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S. / et al. 2006 Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. / Theor. Appl. Genet. 113, 1409-420. CrossRef
    2. Anderson J. A., Churchill G. A., Sutrique J. E., Tanksley S. D. and Sorrells M. E. 1993 Optimizing parental selection for genetic linkage maps. / Genome 36, 181-86. CrossRef
    3. Barcaccia G., Meneghetti S., Albertini E., Triest L. and Lucchin M. 2003 Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for / Salix alba × / Salix fragilis interspecific hybrids. / Heredity 90, 169-80.
    4. Blanco A., Bellomo M. P., Cenci A., De Giovanni C., D’Ovidio R., Iacono E. / et al. 1998 A genetic linkage map of durum wheat. / Theor. Appl. Genet. 97, 721-28. CrossRef
    5. Burns M. J., Edwards K. J., Newbury H. J., Ford-Lloyd B. V. and Baggott C. D. 2001 Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea ( / Cajanus cajan). / Mol. Ecol. Notes 1, 283-85. CrossRef
    6. Cuc L. M., Mace E. S., Crouch J. H., Quang V. D., Long T. D. and Varshney R. K. 2008 Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut ( / Arachis hypogaea). / BMC Plant Biol. 8, 55. CrossRef
    7. Diatchenko L., Lau Y. F. C., Campbell A. P., Chenchik A., Moqadam F., Huang B. / et al. 1996 Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. / Proc. Natl. Acad. Sci. USA 93, 6025-030. CrossRef
    8. Jaccoud D., Peng K., Feinstein D. and Kilian A. 2001 Diversity Arrays: a solid state technology for sequence information independent genotyping. / Nucleic Acid. Res. 29, e25. CrossRef
    9. Kilian A., Huttner E., Wenzl P., Jaccoud D., Carling J., Caig V. / et al. 2005 The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In / Proceedings of the International Congress ‘In the wake of the double helix: from the green revolution to the gene revolution-/em> (ed. R. Tuberosa, R. L. Phillips and M. Gale), pp 443-61. Avenue media, Bologna, Italy.
    10. Lander E. S., Green P., Abrahamson J., Barlow A. and Daly M. J. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. / Genomics 1, 174-81. CrossRef
    11. Lezar S., Myburg A. A., Berger D. K., Wingfield M. J. and Wingfield B. D. 2004 Development and assessment of microarray-based DNA fingerprinting in / Eucalyptus grandis. / Theor. Appl. Genet. 109, 1329-336. CrossRef
    12. Liang N., Bao Z., Temnykh S., Cheng Z., Jiang J., Wing R. A. / et al. 2002 Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. / Genetics 161, 1293-305.
    13. Livingstone K. D., Lackney V. K., Blauth J. R., Van Wijk R. and Jahn M. K. 1999 Genome mapping in Capsicum and evolution of genome structure in / Solanaceae. / Genetics 152, 1183-202.
    14. Lu H., Romero-Severson J. and Bernardo R. 2002 Chromosomal regions associated with segregation distortion in maize. / Theor. Appl. Genet. 105, 622-28. CrossRef
    15. Mignouna H. D., Mank R. A., Ellis T. H. N., van den Bosch N., Asiedu R., Ng S. Y. C. and Peleman J. 2002 A genetic linkage map of guinea yam ( / Dioscorea rotundata Poir.) based on AFLP markers. / Theor. Appl. Genet. 105, 716-25. CrossRef
    16. Moore G. 2000 Cereal chromosome structure, evolution, and pairing. / Annu. Rev. Plant Physiol. Plant. Mol. Biol. 51, 195-22. CrossRef
    17. Renganayaki K., Jessup R. W., Burson B. L., Hussey M. A. and Read J. C. 2005 Identification of male-specific AFLP markers in dioecious texas bluegrass. / Crop. Sci. 45, 2529-539. CrossRef
    18. Saal B. and Wricke G. 2008 Clustering of amplified fragment length polymorphism markers in a linkage map of rye. / Plant Breed. 121, 117-23. CrossRef
    19. Sandal N., Krusell L., Radutoiu S., Olbryt M., Pedrosa A., Stracke S. / et al. 2002 A genetic linkage map of the model legume / Lotus japonicus and strategies for fast mapping of new loci. / Genetics 161, 1673-683.
    20. Tanksley S. D., Ganal M. W., Prince J. P. and de Vicente M. C. 1992 High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. / Genetics 132, 1141-160.
    21. Varshney R. K., Hoisington D. A. and Tyagi A. K. 2006 Advances in cereal genomics and applications in crop breeding. / Trends Biotechnol. l 24, 490-99. CrossRef
    22. Varshney R. K., Close T. J., Singh N. K., Hoisington D. A. and Cook D. R. 2009 Orphan legume crops enter the genomics era! / Curr. Opin. Plant Biol. 12, 202-10. CrossRef
    23. Varshney R. K., Penmetsa R. V., Dutta S., Kulwal P. L., Saxena R. K., Datta S. / et al. 2010 Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea ( / Cajanus cajan L.). / Mol. Breed. 26, 393-08. CrossRef
    24. Wang S., Basten C. J. and Zeng Z. B. 2007 Windows QTL cartographer 2.5. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
    25. Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A. and Kilian A. 2004 Diversity arrays technology (DArT) for whole-genome profiling of barley. / Proc. Natl. Acad. Sci. USA 101, 9915-920. CrossRef
    26. Wittenberg A. H., Van der Lee T., Cayla C., Kilian A., Visser R. G. and Schouten H. J. 2005 Validation of the high-throughput marker technology DArT using the model plant / Arabidopsis thaliana. / Mol. Genet. Genomics 274, 30-9. CrossRef
    27. Xia L., Peng K., Yang S., Wenzl P., Carmen de Vicente M., Fregene M. and Kilian A. 2005 DArT for high-throughput genotyping of cassava ( / Manihot esculenta) and its wild relatives. / Theor. Appl. Genet. 110, 1092-098. CrossRef
    28. Yang S., Pang W., Ash G., Harper J., Carling J., Wenzl P. / et al. 2006 Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. / Theor. Appl. Genet. 113, 585-95. CrossRef
  • 作者单位:SHI YING YANG (1) (2) (3)
    RACHIT K. SAXENA (4)
    PAWAN L. KULWAL (5)
    GAVIN J. ASH (2)
    ANUJA DUBEY (4) (6)
    JOHN D. I. HARPER (2)
    HARI D. UPADHYAYA (4)
    RAGINI GOTHALWAL (6)
    ANDRZEJ KILIAN (1)
    RAJEEV K. VARSHNEY (4) (7)

    1. Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, Canberra, ACT, 2600, Australia
    2. EH Graham Centre for Agricultural Innovation (NSW Department of Industry and Investment and Charles Sturt University), P. O. Box 588, Wagga Wagga, NSW, 2650, Australia
    3. Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, People’s Republic of China
    4. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
    5. Mahatma Phule Agricultural University, Rahuri, Ahmednagar, 413 722, Maharashtra, India
    6. Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal, 462 026, India
    7. Theme-Comparative and Applied Genomics, Generation Challenge Program (GCP), c/o CIMMYT, Int APDO Postal 6-41, 06600, Mexico, DF, Mexico
文摘
With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P-gt; 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0?cM and 451.6?cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700