Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol
详细信息    查看全文
  • 作者:Tarek Dishisha (1)
    Luciana P Pereyra (1)
    Sang-Hyun Pyo (1)
    Robert A Britton (2)
    Rajni Hatti-Kaul (1)

    1. Department of Biotechnology
    ; Center for Chemistry and Chemical Engineering ; Lund University ; SE-221 00 ; Lund ; Sweden
    2. Department of Microbiology and Molecular Genetics
    ; Michigan State University ; East Lansing ; Michigan ; USA
  • 关键词:Lactobacillus reuteri ; 3 ; hydroxypropionaldehyde ; 3 ; hydroxypropionic acid ; 1 ; 3 ; propanediol ; Biodiesel glycerol ; Flux analysis ; Biorefinery ; Biochemicals
  • 刊名:Microbial Cell Factories
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:517 KB
  • 参考文献:1. Jong, E, Higson, A, Walsh, P, Wellisch, M, Barbosa, M, Blaauw, R, Gosselink, R, Ree, R, Jorgensen, H, Mandl, M, McLaughlin, M, Smith, MA, Willke, T (2012) Value Added Products from Biorefineries.
    2. Werpy, T, Petersen, G, Aden, A, Bozell, J, Holladay, J, White, J, Manheim, A, Elliot, D, Lasure, L, Jones, S, Gerber, M, Ibsen, K, Lumberg, L, Kelley, S (2004) Top Value Added Chemicals from Biomass, Volume 1鈥擱esults of Screening for Potential Candidates from Sugars and Synthesis Gas. U.S. Department of Energy, Oak Ridge, TN
    3. Vollenweider, S, Lacroix, C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64: pp. 16-27 CrossRef
    4. Kumar, V, Ashok, S, Park, S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31: pp. 945-961 CrossRef
    5. Haas, T, Yu, D, Sauer, J, Arntz, D, Freund, A, Tacke, T (1998) Process for the Production of 1,3-proapendiol by Hydrogenating 3-Hydroxypropionaldehyde.
    6. Powell, JB, Mullin, SB, Weider, PR, Eubanks, DC, Arhancet, JP (1998) Process for Preparing 1,3-propanediol.
    7. Bauer, R, du Toit, M, Kossmann, J (2010) Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. Int J Food Microbiol 137: pp. 28-31 CrossRef
    8. Ulmer, C, Deckwer, WD, Zeng, AP (2002) Zweistufiger prozess zur herstellung von 1,3-propandiol und 3-hydroxypropionaldehyd aus glycerin. Chem-Ing-Tech 74: pp. 674 CrossRef
    9. L眉thi-Peng, Q, Scharer, S, Puhan, Z (2002) Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl Microbiol Biotechnol 60: pp. 73-80 CrossRef
    10. Della Pina, C, Falletta, E, Rossi, M (2011) A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green Chem 13: pp. 1624-1632 CrossRef
    11. Lilga, MA, White, JF, Holladay, JE, Zacher, AH, Muzatko, DS, Orth, RJ (2010) Method for Conversion of 尾-hydroxy Carbonyl Compounds.
    12. Banner, T, Fosmer, A, Jessen, H, Marasco, E, Rush, B, Veldhouse, J, De Souza, M (2011) Microbial bioprocesses for industrial-scale chemical production. Biocatalysis for Green Chemistry and Chemical Process Development. Tao J and Kazlauskas R. Hoboken, NJ, John Wiley & Sons, Inc, pp. 429-467 CrossRef
    13. Zeng, A-P, Biebl, H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, Volume 74. Scheper T, Sch眉gerl K, Zeng A-P, New York: Springer Berlin Heidelberg, pp. 239-259
    14. Steverding, D (2010) Mikrobielle herstellung von 1,3-propandiol. fermentative biotechnologie. Chem Unserer Zeit 44: pp. 384-389 CrossRef
    15. Werle, P, Morawietz, M, Lundmark, S, S枚rensen, K, Karvinen, E, Lehtonen, J (2000) Alcohols, polyhydric. Ullmann's Encyclopedia of Industrial Chemistry, Volume 2. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 263-284
    16. Nakamura, CE, Gatenby, AA, Hsu, AK-h, La Reau, RD, Haynie, SL, Diaz-torres, M, Trimbur, DE, Whited, GM, Nagarajan, V, Payne, MS, Picataggio, SK, Nair, RV (2000) Method for the Production of 1,3-propanediol by Recombinant Microorganisms.
    17. / BASF, Cargill and Novozymes Achieve Milestone in Bio-based Acrylic Acid Process. [ http://www.basf.com/group/pressrelease/P-13-356]
    18. Mirasol, F (2009) Chemical profile: Biodiesel. ICIS Chemical Business.
    19. / Statistics - EU biodiesel industry. [ http://www.ebb-eu.org/stats.php]
    20. Agarwal, GP (1990) Glycerol. Microbial Bioproducts. Edited by Fiechter A. [Scheper T, Belkin S, Doran PM, Endo I, Gu MB, Hu WS, Mattiasson B, Nielsen J, Stephanopoulos GN, Ulber R, Zeng A-P, Zhong J-J, Zhou W, Harald S (Series Editors): Advances in Biochemical Engineering/Biotechnology, vol 41.], New York: Springer Berlin Heidelberg, pp. 95-128 CrossRef
    21. Wang, ZX, Zhuge, J, Fang, HY, Prior, BA (2001) Glycerol production by microbial fermentation: A review. Biotechnol Adv 19: pp. 201-223 CrossRef
    22. Yasuda, S, Mukoyama, M, Horikawa, H, Toraya, T, Morita, H (2007) Process for Producting 1,3-propanediol and or/3-hydroxypropionic Acid.
    23. Zhu, JG, Ji, XJ, Huang, H, Du, J, Li, S, Ding, YY (2009) Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy. Korean J Chem Eng 26: pp. 1679-1685 CrossRef
    24. Ashok, S, Raj, SM, Rathnasingh, C, Park, S (2011) Development of recombinant Klebsiella pneumoniae 螖dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biot 90: pp. 1253-1265 CrossRef
    25. Huang, Y, Li, Z, Shimizu, K, Ye, Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour Technol 103: pp. 351-359 CrossRef
    26. Kumar, V, Sankaranarayanan, M, Durgapal, M, Zhou, S, Ko, Y, Ashok, S, Sarkar, R, Park, S (2013) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresour Technol 135: pp. 555-563 CrossRef
    27. Jiang, XL, Meng, X, Xian, M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biot 82: pp. 995-1003 CrossRef
    28. Sardari, RRR, Dishisha, T, Pyo, SH, Hatti-Kaul, R (2013) Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol. Biotechnol Bioeng 110: pp. 1243-1248 CrossRef
    29. Krauter, H, Willke, T, Vorlop, K-D (2012) Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. New Biotechnol 29: pp. 211-217 CrossRef
    30. Sardari, RRR, Dishisha, T, Pyo, S-H, Hatti-Kaul, R (2013) Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger. J Biotechnol 168: pp. 534-542 CrossRef
    31. Talarico, TL, Casas, IA, Chung, TC, Dobrogosz, WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32: pp. 1854-1858 CrossRef
    32. Raj, SM, Rathnasingh, C, Jo, JE, Park, S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43: pp. 1440-1446 CrossRef
    33. Sriramulu, DD, Liang, M, Hernandez-Romero, D, Raux-Deery, E, Lunsdorf, H, Parsons, JB, Warren, MJ, Prentice, MB (2008) Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190: pp. 4559-4567 CrossRef
    34. Sabet-Azad, R, Linares-Pasten, JA, Torkelson, L, Sardari, RRR, Hatti-Kaul, R (2013) Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: Kinetic characterization and molecular modeling. Enzyme Microb Technol 53: pp. 235-242 CrossRef
    35. Stephanopoulos, G (1999) Metabolic Fluxes and Metabolic Engineering. Metab Eng 1: pp. 1-11 CrossRef
    36. Stephanopoulos, GN, Aristidou, AA, Nielsen, J (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA
    37. van Gulik, WM, de Laat, WTAM, Vinke, JL, Heijnen, JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotech Bioeng 68: pp. 602-618 CrossRef
    38. Kerfeld, CA, Heinhorst, S, Cannon, GC (2010) Bacterial Microcompartments. Annu Rev Microbiol 64: pp. 391-408 CrossRef
    39. van Pijkeren, J-P, Neoh, KM, Sirias, D, Findley, AS, Britton, RA (2012) Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 3: pp. 209-217 CrossRef
    40. Stevens, MJA, Vollenweider, S, Meile, L, Lacroix, C (2011) 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb Cell Fact 10: pp. 61-69 CrossRef
    41. L眉thi-Peng, Q, Dileme, FB, Puhan, Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biot 59: pp. 289-296 CrossRef
    42. Luo, LH, Seo, JW, Baek, JO, Oh, BR, Heo, SY, Hong, WK, Kim, DH, Kim, CH (2011) Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl Microbiol Biot 89: pp. 697-703 CrossRef
    43. van Maris, AJA, Konings, WN, van Dijken, JP, Pronk, JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6: pp. 245-255 CrossRef
    44. Toraya, T (2003) Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem Rev 103: pp. 2095-2127 CrossRef
    45. Arskold, E, Lohmeler-Vogel, E, Cao, R, Roos, S, Radstrom, P, van Niel, EWJ (2008) Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J Bacteriol 190: pp. 206-212 CrossRef
    46. Morita, H, Toh, H, Fukuda, S, Horikawa, H, Oshima, K, Suzuki, T, Murakami, M, Hisamatsu, S, Kato, Y, Takizawa, T, Fukuoka, H, Yoshimura, T, Itoh, K, O'Sullivan, DJ, McKay, LL, Ohno, H, Kikuchi, J, Masaoka, T, Hattori, M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15: pp. 151-161 CrossRef
    47. Cie, A, Lantz, S, Schlarp, R, Tzakas, M (2012) Senior design reports (CBE): Renewable acrylic acid.
    48. Chen, P, Andersson, DI, Roth, JR (1994) The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176: pp. 5474-5482
    49. Doleyres, Y, Beck, P, Vollenweider, S, Lacroix, C (2005) Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl Microbiol Biot 68: pp. 467-474 CrossRef
    50. Talarico, TL, Axelsson, LT, Novotny, J, Fiuzat, M, Dobrogosz, WJ (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol:NAD oxidoreductase. Appl Environ Microb 56: pp. 943-948
    51. El-Ziney, MG, Arneborg, N, Uyttendaele, M, Debevere, J, Jakobsen, M (1998) Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 20: pp. 913-916 CrossRef
    52. Circle, SJ, Stone, L, Boruff, CS (1945) Acrolein determination by means of tryptophane: a colorimetric micromethod. Ind Eng Chem 17: pp. 259-262
    53. Ulmer, C, Zeng, AP (2007) Microbial production of 3-hydroxypropionaldehyde from glycerol bioconversion. Chem Biochem Eng Q 21: pp. 321-326
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Background Lactobacillus reuteri converts glycerol to 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO) via 3-hydroxypropionaldehyde (3HPA) as an intermediate using enzymes encoded in its propanediol-utilization (pdu) operon. Since 3HP, 1,3PDO and 3HPA are important building blocks for the bio-based chemical industry, L. reuteri can be an attractive candidate for their production. However, little is known about the kinetics of glycerol utilization in the Pdu pathway in L. reuteri. In this study, the metabolic fluxes through the Pdu pathway were determined as a first step towards optimizing the production of 3HPA, and co-production of 3HP and 1,3PDO from glycerol. Resting cells of wild-type (DSM 20016) and recombinant (RPRB3007, with overexpressed pdu operon) strains were used as biocatalysts. Results The conversion rate of glycerol to 3HPA by the resting cells of L. reuteri was evaluated by in situ complexation of the aldehyde with carbohydrazide to avoid the aldehyde-mediated inactivation of glycerol dehydratase. Under operational conditions, the specific 3HPA production rate of the RPRB3007 strain was 1.9 times higher than that of the wild-type strain (1718.2 versus 889.0 mg/gCDW.h, respectively). Flux analysis of glycerol conversion to 1,3PDO and 3HP in the cells using multi-step variable-volume fed-batch operation showed that the maximum specific production rates of 3HP and 1,3PDO were 110.8 and 93.7 mg/gCDW.h, respectively, for the wild-type strain, and 179.2 and 151.4 mg/gCDW.h, respectively, for the RPRB3007 strain. The cumulative molar yield of the two compounds was ~1 mol/mol glycerol and their molar ratio was ~1 mol3HP/mol1,3PDO. A balance of redox equivalents between the glycerol oxidative and reductive pathway branches led to equimolar amounts of the two products. Conclusions Metabolic flux analysis was a useful approach for finding conditions for maximal conversion of glycerol to 3HPA, 3HP and 1,3PDO. Improved specific production rates were obtained with resting cells of the engineered RPRB3007 strain, highlighting the potential of metabolic engineering to render an industrially sound strain. This is the first report on the production of 3HP and 1,3PDO as sole products using the wild-type or mutant L. reuteri strains, and has laid ground for further work on improving the productivity of the biotransformation process using resting cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700