Genome-wide mapping of matrix attachment regions in Drosophila melanogaster
详细信息    查看全文
  • 作者:Rashmi U Pathak (76)
    Arumugam Srinivasan (76)
    Rakesh K Mishra (76)

    76. Centre for Cellular and Molecular Biology
    ; Council of Scientific and Industrial Research ; Uppal Road ; Hyderabad ; 500 007 ; India
  • 关键词:Nuclear matrix ; Matrix attachment regions ; Genome packaging
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,079 KB
  • 参考文献:1. Berezney, R, Coffey, DS (1975) Nuclear protein matrix: association with newly synthesized DNA. Science 189: pp. 291-293 CrossRef
    2. Cockerill, PN, Garrard, WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44: pp. 273-282 CrossRef
    3. Jackson, DA, Cook, PR (1988) Visualization of a filamentous nucleoskeleton with a 23聽nm axial repeat. EMBO J 7: pp. 3667-3677
    4. Nickerson, JA, Krockmalnic, G, Wan, KM, Penman, S (1997) The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc Natl Acad Sci U S A 94: pp. 4446-4450 CrossRef
    5. Hemmerich, P, Schmiedeberg, L, Diekmann, S (2011) Dynamic as well as stable protein interactions contribute to genome function and maintenance. Chromosome Res 19: pp. 131-151 CrossRef
    6. Moir, RD, Spann, TP, Herrmann, H, Goldman, RD (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149: pp. 1179-1192 CrossRef
    7. Kumaran, RI, Muralikrishna, B, Parnaik, VK (2002) Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J Cell Biol 159: pp. 783-793 CrossRef
    8. de Lanerolle, P, Serebryannyy, L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13: pp. 1282-1288 CrossRef
    9. Kallappagoudar, S, Varma, P, Pathak, RU, Senthilkumar, R, Mishra, RK (2010) Nuclear matrix proteome analysis of Drosophila melanogaster. Mol Cell Proteomics 9: pp. 2005-2018 CrossRef
    10. Calikowski, TT, Meulia, T, Meier, I (2003) A proteomic study of the arabidopsis nuclear matrix. J Cell Biochem 90: pp. 361-378 CrossRef
    11. Engelke, R, Riede, J, Hegermann, J, Wuerch, A, Eimer, S, Dengjel, J, Mittler, G (2014) The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization. J Proteome Res 13: pp. 3940-3956 CrossRef
    12. Kouzarides, T (2007) Chromatin modifications and their function. Cell 128: pp. 693-705 CrossRef
    13. Meldi, L, Brickner, JH (2011) Compartmentalization of the nucleus. Trends Cell Biol 21: pp. 701-708 CrossRef
    14. Mirkovitch, J, Mirault, ME, Laemmli, UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: pp. 223-232 CrossRef
    15. Pardoll, DM, Vogelstein, B (1980) Sequence analysis of nuclear matrix associated DNA from rat liver. Exp Cell Res 128: pp. 466-470 CrossRef
    16. Gasser, SM, Amati, BB, Cardenas, ME, Hofmann, JF (1989) Studies on scaffold attachment sites and their relation to genome function. Int Rev Cytol 119: pp. 57-96 CrossRef
    17. Heng, HH, Goetze, S, Ye, CJ, Liu, G, Stevens, JB, Bremer, SW, Wykes, SM, Bode, J, Krawetz, SA (2004) Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 117: pp. 999-1008 CrossRef
    18. Breyne, P, van Montagu, M, Depicker, N, Gheysen, G (1992) Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4: pp. 463-471 CrossRef
    19. Avramova, Z, Tikhonov, A, Chen, M, Bennetzen, JL (1998) Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res 26: pp. 761-767 CrossRef
    20. Bode, J, Kohwi, Y, Dickinson, L, Joh, T, Klehr, D, Mielke, C, Kohwi-Shigematsu, T (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255: pp. 195-197 CrossRef
    21. Yamamura, J, Nomura, K (2001) Analysis of sequence-dependent curvature in matrix attachment regions. FEBS Lett 489: pp. 166-170 CrossRef
    22. Gasser, SM, Laemmli, UK (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46: pp. 521-530 CrossRef
    23. Amati, B, Gasser, SM (1990) Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts. Mol Cell Biol 10: pp. 5442-5454
    24. Forrester, WC, van Genderen, C, Jenuwein, T, Grosschedl, R (1994) Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265: pp. 1221-1225 CrossRef
    25. Jenuwein, T, Forrester, WC, Fernandez-Herrero, LA, Laible, G, Dull, M, Grosschedl, R (1997) Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385: pp. 269-272 CrossRef
    26. Yusufzai, TM, Felsenfeld, G (2004) The 5鈥?HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl Acad Sci U S A 101: pp. 8620-8624 CrossRef
    27. Evans, K, Ott, S, Hansen, A, Koentges, G, Wernisch, L (2007) A comparative study of S/MAR prediction tools. BMC Bioinformatics 8: pp. 71 CrossRef
    28. Keaton, MA, Taylor, CM, Layer, RM, Dutta, A (2011) Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes. PLoS ONE 6: pp. e17912 CrossRef
    29. Pathak, RU, Rangaraj, N, Kallappagoudar, S, Mishra, K, Mishra, RK (2007) Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol Cell Biol 27: pp. 4796-4806 CrossRef
    30. Zhang, Y, Liu, T, Meyer, CA, Eeckhoute, J, Johnson, DS, Bernstein, BE, Nusbaum, C, Myers, RM, Brown, M, Li, W, Liu, XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: pp. R137 CrossRef
    31. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    32. Singh, GB, Kramer, JA, Krawetz, SA (1997) Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res 25: pp. 1419-1425 CrossRef
    33. Frisch, M, Frech, K, Klingenhoff, A, Cartharius, K, Liebich, I, Werner, T (2002) In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res 12: pp. 349-354 CrossRef
    34. Gasser, SM, Laemmli, UK (1986) The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J 5: pp. 511-518
    35. Graveley, BR, Brooks, AN, Carlson, JW, Duff, MO, Landolin, JM, Yang, L, Artieri, CG, van Baren, MJ, Boley, N, Booth, BW, Brown, JB, Cherbas, L, Davis, CA, Dobin, A, Li, R, Lin, W, Malone, JH, Mattiuzzo, NR, Miller, D, Sturgill, D, Tuch, BB, Zaleski, C, Zhang, D, Blanchette, M, Dudoit, S, Eads, B, Green, RE, Hammonds, A, Jiang, L, Kapranov, P (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471: pp. 473-479 CrossRef
    36. Dye, MJ, Gromak, N, Proudfoot, NJ (2006) Exon tethering in transcription by RNA polymerase II. Mol Cell 21: pp. 849-859 CrossRef
    37. Schwartz, S, Meshorer, E, Ast, G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16: pp. 990-995 CrossRef
    38. Boulikas, T (1993) Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem 52: pp. 14-22 CrossRef
    39. Sander, M, Hsieh, TS (1985) Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Res 13: pp. 1057-1072 CrossRef
    40. Kas, E, Laemmli, UK (1992) In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 11: pp. 705-716
    41. Zeitlinger, J, Stark, A, Kellis, M, Hong, JW, Nechaev, S, Adelman, K, Levine, M, Young, RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39: pp. 1512-1516 CrossRef
    42. Kumar, RP, Senthilkumar, R, Singh, V, Mishra, RK (2010) Repeat performance: how do genome packaging and regulation depend on simple sequence repeats?. Bioessays 32: pp. 165-174 CrossRef
    43. Narlikar, L (2013) MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data. Nucleic Acids Res 41: pp. 21-32 CrossRef
    44. Nabirochkin, S, Ossokina, M, Heidmann, T (1998) A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. J Biol Chem 273: pp. 2473-2479 CrossRef
    45. Negre, N, Brown, CD, Ma, L, Bristow, CA, Miller, SW, Wagner, U, Kheradpour, P, Eaton, ML, Loriaux, P, Sealfon, R, Li, Z, Ishii, H, Spokony, RF, Chen, J, Hwang, L, Cheng, C, Auburn, RP, Davis, MB, Domanus, M, Shah, PK, Morrison, CA, Zieba, J, Suchy, S, Senderowicz, L, Victorsen, A, Bild, NA, Grundstad, AJ, Hanley, D, MacAlpine, DM, Mannervik, M (2011) A cis-regulatory map of the Drosophila genome. Nature 471: pp. 527-531 CrossRef
    46. Srinivasan, A, Mishra, RK (2012) Chromatin domain boundary element search tool for Drosophila. Nucleic Acids Res 40: pp. 4385-4395 CrossRef
    47. Kumar, RP, Krishnan, J, Pratap Singh, N, Singh, L, Mishra, RK (2013) GATA simple sequence repeats function as enhancer blocker boundaries. Nat Commun 4: pp. 1844 CrossRef
    48. Kazazian, HH (2004) Mobile elements: drivers of genome evolution. Science 303: pp. 1626-1632 CrossRef
    49. Luderus, ME, de Graaf, A, Mattia, E, den Blaauwen, JL, Grande, MA, de Jong, L, van Driel, R (1992) Binding of matrix attachment regions to lamin B1. Cell 70: pp. 949-959 CrossRef
    50. Gerasimova, TI, Corces, VG (2001) Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35: pp. 193-208 CrossRef
    51. Croft, JA, Bridger, JM, Boyle, S, Perry, P, Teague, P, Bickmore, WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: pp. 1119-1131 CrossRef
    52. Gerdes, MG, Carter, KC, Moen, PT, Lawrence, JB (1994) Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol 126: pp. 289-304 CrossRef
    53. Gilchrist, DA, Fromm, G, dos Santos, G, Pham, LN, McDaniel, IE, Burkholder, A, Fargo, DC, Adelman, K (2012) Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev 26: pp. 933-944 CrossRef
    54. Hendrix, DA, Hong, JW, Zeitlinger, J, Rokhsar, DS, Levine, MS (2008) Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci U S A 105: pp. 7762-7767 CrossRef
    55. Brodsky, AS, Meyer, CA, Swinburne, IA, Hall, G, Keenan, BJ, Liu, XS, Fox, EA, Silver, PA (2005) Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol 6: pp. R64 CrossRef
    56. Shim, EY, Hong, SJ, Oum, JH, Yanez, Y, Zhang, Y, Lee, SE (2007) RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 27: pp. 1602-1613 CrossRef
    57. Workman, JL (2006) Nucleosome displacement in transcription. Genes Dev 20: pp. 2009-2017 CrossRef
    58. Negre, N, Brown, CD, Shah, PK, Kheradpour, P, Morrison, CA, Henikoff, JG, Feng, X, Ahmad, K, Russell, S, White, RA, Stein, L, Henikoff, S, Kellis, M, White, KP (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6: pp. e1000814 CrossRef
    59. Subramanian, S, Mishra, RK, Singh, L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: pp. R13 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Eukaryotic genome acquires functionality upon proper packaging within the nucleus. This process is facilitated by the structural framework of Nuclear Matrix, a nucleo-proteinaceous meshwork. Matrix Attachment Regions (MARs) in the genome serve as anchoring sites to this framework. Results Here we report direct sequencing of the MAR preparation from Drosophila melanogaster embryos and identify >7350 MARs. This amounts to ~2.5% of the fly genome and often coincide with AT rich non-coding regions. We find significant association of MARs with the origins of replication, transcription start sites, paused RNA Polymerase II sites and exons, but not introns, of highly expressed genes. We also identified sequence motifs and repeats that constitute MARs. Conclusion Our data reveal the contact points of genome to the nuclear architecture and provide a link between nuclear functions and genomic packaging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700