Solvent influence on the rotational isomerism in terephthalaldehyde
详细信息    查看全文
文摘
Experimental and theoretical studies were carried out in order to investigate the rotational isomerism of terephthalaldehyde. The dipole moment measurements and infrared spectroscopy in Ar matrix and using various solvents were performed experimentally. In order to supplement the experimental study, both static and dynamical theoretical calculations were performed. IR spectra and potential energy distribution (PED) were calculated for both cis and trans isomers of terephthalaldehyde in gas phase using B3LYP/6-31G(d,p) level of theory. Further calculations consisted of conformational analysis were performed in order to estimate the rotational barrier and relative stabilities of isomers. The DFT theory with B3LYP functional and four double-zeta and triple-zeta basis sets served as framework for this part of calculations. Semiempirical AM1 and PM3 methods were also used for gas-phase modeling. Molecular dynamics using MM3 force field was applied to study the preferences of solvent molecules’ orientation around the studied molecule. Additionally, the effect of solvent polarity on the Gibbs energy of the trans ⇌ cis equilibrium was analyzed in terms of the continuum dielectric medium models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700