Predicting Irrigated and Rainfed Rice Yield Under Projected Climate Change Scenarios in the Eastern Region of India
详细信息    查看全文
  • 作者:A. V. M. Subba Rao ; Arun K. Shanker ; V. U. M. Rao
  • 关键词:Climate change ; Simulation modeling ; Elevated CO2 ; Sink capacity ; Photosynthesis
  • 刊名:Environmental Modeling & Assessment
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:17-30
  • 全文大小:2,686 KB
  • 参考文献:1.Baker, J. T., Allen, L. H., & Boote, K. J. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany, 43, 959–964.CrossRef
    2.Baker, J. T., Allen, L. H., Jr., & Boote, K. J. (1996). Assessment of rice response to global climate change: CO2 and temperature. In G. W. Koch & H. A. Mooney (Eds.), Carbon dioxide and terrestrial ecosystems (pp. 256–282). San Diego: Academic.
    3.Bala, B. K., & Hossain, M. A. (2013). Modeling of ecological footprint and climate change impacts on food security of the Hill Tracts of Chittagong in Bangladesh. Environmental Modeling & Assessment, 18, 39–55.CrossRef
    4.Collier, M. A., Dix, M. R., & Hirst, A. C. (2007). CSIRO Mk3 climate system model and meeting the strict IPCC AR4 data requirements. MODSIM07 International Congress on Modelling and Simulation: land, water & environmental management: integrated systems for sustainability: Christchurch, 10–13 December 2007: Proceedings, Christchurch, N.Z.
    5.Darwin, R., & Kennedy, D. (2000). Economic effects of CO2 fertilization of crops: transforming changes in yield into changes in supply. Environmental Modeling & Assessment, 5, 157–168.CrossRef
    6.Falloon, P., & Betts, R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Science of the Total Environment, 408(23), 5667–5687.CrossRef
    7.Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., & Makino, A. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Functional Plant Biology, 40(2), 148–159.CrossRef
    8.Hoogenboom, G., Wilkens, P. W., Thornton, P. K., Jones, J. W., Hunt, L. A., & Imamura, D. T. (1999). Decision support system for agrotechnology transfer 3.5. In G. Hoogenboom, P. W. Wilkens, & G. Y. Tsuji (Eds.), DSSAT version 3, vol. 4 (ISBN 1-886684-04-9) (pp. 1–36). Honolulu: University of Hawaii.
    9.IPCC. (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.
    10.Jones P.G., Thornton P.K. and Heinke J. (2011). Generating characteristic daily weather data using downscaled climate model data from the IPCC fourth assessment. https://​hc.​box.​net/​shared/​f2gk053td8 .
    11.Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.CrossRef
    12.Julia, C., & Dingkuhn, M. (2012). Variation in time of day of anthesis in rice in different climatic environments. European Journal of Agronomy, 43, 166–174.CrossRef
    13.K-1 Model Developers, 2004. K-1 coupled model (MIROC) description. K-1 technical report 1, Hasumi, H., Emori, S. (Eds.), Center for Climate System Research, University of Tokyo, Tokyo, Japan
    14.Kii, M., Akimoto, K., & Hayashi, A. (2013). Risk of hunger under climate change, social disparity, and agroproductivity scenarios. Environmental Modeling & Assessment, 18, 299–317.CrossRef
    15.Kim, H. Y., Lieffering, M., Kobayashi, K., Okada, M., & Miura, S. (2003). Seasonal change in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biology, 9, 826–837.CrossRef
    16.Lenzen, M., Dey, C., Foran, B., Widmer-Cooper, A., Ohlemüller, R., Williams, M., & Wiedmann, T. (2013). Modelling interactions between economic activity, greenhouse gas emissions, biodiversity and agricultural production. Environmental Modeling & Assessment, 18, 377–416.CrossRef
    17.Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G., & Liu, G. (2008). Yield formation of CO2-enriched hybrid rice cultivar Shanyou under fully open-airfield conditions. Field Crops Research, 108, 93–100.CrossRef
    18.Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.CrossRef
    19.Mavromatis, T., Boote, K. J., Jones, J. W., Irmak, A., Shinde, D., & Hoogenboom, G. (2001). Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Science, 41(1), 40–51.CrossRef
    20.Nelson, G. C., & Shively, G. E. (2014). Modeling climate change and agriculture: an introduction to the special issue. Agricultural Economics, 45(1), 1–2.CrossRef
    21.Penning de Vries, F., Jansen, D., ten Berge, H., & Bakema, A. (1989). Simulation of eco-physiological processes of growth in several annual crops. Wageningen: Pudoc.
    22.Quiring, S. M., & Legates, D. R. (2008). Application of ceres-maize for within-season prediction of rainfed corn yields in Delaware, USA. Agricultural and Forest Meteorology, 148, 964–975.CrossRef
    23.Ritchie, J. T. (1998). Soil water balance and plant stress. In G. Y. Tsuji, G. Hoogenboom, P. K. Thornton (Eds.), Understanding options for agricultural production. Kluwer Academic, Dordrecht, pp. 41/54.
    24.Roeckner, A., Brokopf, R., Esch, M., et al. (2003). The atmospheric general circulation model ECHAM5. Part I: model description. MPI Report 349. Hamburg: Max Planck Institute for Meteorology. 127 pp.
    25.Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Suasen, R., Schlese, U., Schubert, S. and Windelband, M. (1992). Simulation of the present-day climate with the ECHAM4 model: impact of model physics and resolution. Max-Planck Institute for Meteorology, Report No. 93, Hamburg, Germany, 171pp.
    26.Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U. and Schulzweida, U. (1996). The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Report No. 218, Hamburg, Germany, 90pp.
    27.Satapathy, S. S., Swain, D. K., & Herath, S. (2014). Field experiments and simulation to evaluate rice cultivar adaptation to elevated carbon dioxide and temperature in sub-tropical India. European Journal of Agronomy, 54, 21–33.CrossRef
    28.Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, B. M. (2013). IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
    29.Sudharsan, D., Adinarayana, J., Reddy, D. R., Sreenivas, G., Ninomiya, S., Hirafuji, M., & Merchant, S. N. (2013). Evaluation of weather-based rice yield models in India. International Journal of Biometeorology, 57, 107–123.CrossRef
    30.Warren, R. (2011). The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 217–241.CrossRef
    31.Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., & Sutton, R. T. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology, 29, 1193–1215.CrossRef
    32.Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation of model performance. Journal of Geophysical Research, 90(C5), 8995–9005.CrossRef
    33.Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309–1313.CrossRef
    34.Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., Dong, G., & Wang, Y. (2009). Impact of elevated CO2 concentration on inter-sub specific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research, 112, 7–15.CrossRef
  • 作者单位:A. V. M. Subba Rao (2)
    Arun K. Shanker (1)
    V. U. M. Rao (2)
    V. Narsimha Rao (2)
    A. K. Singh (3)
    Pragyan Kumari (4)
    C. B. Singh (5)
    Praveen Kumar Verma (6)
    P. Vijaya Kumar (2)
    B. Bapuji Rao (2)
    Rajkumar Dhakar (2)
    M. A. Sarath Chandran (7)
    C. V. Naidu (8)
    J. L. Chaudhary (6)
    Ch. Srinivasa Rao (7)
    B. Venkateshwarlu (9)

    2. All India Coordinated Research Project on Agrometeorology, Central Research Institute for Dryland Agriculture (CRIDA), Santoshnagar, Saidabad PO, Hyderabad, 500 059, India
    1. Division of Crop Sciences, Central Research Institute for Dryland Agriculture (CRIDA), Santoshnagar, Saidabad PO, Hyderabad, 500 059, India
    3. Department of Agrometeorology, N.D. University of Agriculture and Technology, Kumarganj, Faizabad, 224 229, Uttar Pradesh, India
    4. Department of Agricultural Physics, Birsa Agricultural University, Kanke, Ranchi, 834 006, Jharkhand, India
    5. Department of Agronomy, C.S. Azad University of Agriculture and Technology, Nawabganj, Kanpur, 208 002, Uttar Pradesh, India
    6. Department of Agro Meteorology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya (IGKV), Krishak Nagar, Raipur, 492004, Chhattisgarh, India
    7. Central Research Institute for Dryland Agriculture (CRIDA), Santoshnagar, Saidabad PO, Hyderabad, 500 059, India
    8. Andhra University, Vishakapatnam, Andhra Pradesh, India
    9. Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani (VNMKV), Parbhani, 431402, Maharashtra, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Mathematical Modeling and IndustrialMathematics
    Applications of Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1573-2967
文摘
Numerous estimates for the coming decades project changes in precipitation resulting in more frequent droughts and floods, rise in atmospheric CO<sub>2sub> and temperature, extensive runoff leading to leaching of soil nutrients, and decrease in freshwater availability. Among these changes, elevated CO<sub>2sub> can affect crop yields in many ways. It is imperative to understand the consequences of elevated CO<sub>2sub> on the productivity of important agricultural crop species in order to devise adaptation and mitigation strategies to combat impending climate change. In this study, we have modeled rice phenology, growth phase, and yield with the “Decision Support System for Agrotechnology Transfer (DSSAT) CERES rice model” and arrived at predicted values of yield under different CO<sub>2sub> concentrations at four different locations in Eastern India out of which three locations were irrigated and one location was rainfed. The ECHAM climate scenario, Model for Interdisciplinary Research on Climate (MIROC)3.0 climate scenario, and ensemble models showed different levels of yield increase with a clear reduction in yield under rainfed rice as compared to irrigated rice. A distinct regional and cultivar difference in response of rice yield to elevated CO<sub>2sub> was seen in this study. Results obtained by simulation modeling at different climate change scenarios support the hypothesis that rice plant responses to elevated CO<sub>2sub> are through stimulation of photosynthesis. Realization of higher yields is linked with source sink dynamics and partitioning of assimilates wherein sink capacity plays an important role under elevated CO<sub>2sub> conditions. Keywords Climate change Simulation modeling Elevated CO<sub>2sub> Sink capacity Photosynthesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700