Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil
详细信息    查看全文
  • 作者:Zahra Rastian ; Abbas Ali Khodadadi ; Zheng Guo…
  • 关键词:MWCNTs ; DBD reactor ; Plasma functionalized MWCNTs ; Immobilized CALB ; Rapeseed oil ; Biodiesel
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:178
  • 期:5
  • 页码:974-989
  • 全文大小:700 KB
  • 参考文献:1.Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry Biotechnology, 118, 155–170.CrossRef
    2.Schmid, R. D., & Verger, R. (1998). Lipases: interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37, 1608–1633.CrossRef
    3.Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62, 9–14.CrossRef
    4.Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: challenges and opportunities. Applied Energy, 119, 497–520.CrossRef
    5.Li, C., Tan, T., Zhang, H., & Feng, W. (2010). Analysis of the conformational stability and activity of Candida antarctica lipase in organic solvent insight from molecular dynamics and quantum mechanics/simulations. Journal of Biological Chemistry, 28, 28434–28441.CrossRef
    6.Park, H. J., Park, K., & Yoo, Y. J. (2013). Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations. Molecular Simulation, 39, 653–659.CrossRef
    7.Trodler, P., & Pleiss, J. (2008). Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Structural Biology, 8, 9.CrossRef
    8.Turkan, A., & Kalay, S. (2008). Study of the mechanism of lipase-catalyzed methanolysis of sunflower oil in tert-butanol and heptanes. Turkey Journal Biochemistry, 33, 45–49.
    9.Lee, K. W., Min, K., Park, K., & Yoo, Y. J. (2010). Development of an amphiphilic matrix for immobilization of Candida antarctica lipase B for biodiesel production. Biotechnology and Bioprocess Engineering, 15, 603–607.CrossRef
    10.Dossat, V., Combes, D., & Marty, A. (1999). Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme and Microbial Technology, 25, 194–200.CrossRef
    11.Kawakami, K., Oda, Y., & Takahashi, R. (2011). Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil. Biotechnology for Biofuels, 4, 42.CrossRef
    12.Feng, W., & Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnology Advances, 29, 889–895.CrossRef
    13.Pavlidis, I. V., Vorhaben, T., Tsoufis, T., Rudolf, P., Bornscheuer, U. T., Gournis, D., & Stamatis, H. (2012). Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresource Technology, 115, 164–171.CrossRef
    14.Verma, M. L., Naebe, M., Barrow, C. J., & Puri, M. (2013). Enzyme immobilization on amino-functionalized multiwalled carbon nanotubes: structural and biocatalytic characterization. PLoS One, 8, e73642.CrossRef
    15.Pourfayaz, F., Mortazavi, Y., Khodadadi, A. A., & Jafari, S. H. (2012). Rapid and enhancement functionalization of MWCNTs in a dielectric barrier discharge plasma in presence of diluted CO2. Applied Physics A, 106, 829–836.CrossRef
    16.Rastian, Z., Khodadadi, A. A., Vahabzadeh, F., Bortolin, C., Dong, M., Mortazavi, Y., Mogharei, A., Vesali-Naseh, M., & Guo, Z. (2014). Facile surface functionalization of multiwalled carbon nanotubes by soft dielectric barrier discharge plasma: generate compatible interface for lipase immobilization. Biochemical Engineering Journal, 90, 16–26.CrossRef
    17.Vesali-Naseh, M., Mortazavi, Y., Khodadadi, A. A., Parsaeian, P., & Moosavi-Movahed, A. A. (2013). Plasma thiol-functionalized carbon nanotubes decorated with gold nanoparticles for glucose biosensor. Sensors and Actuators, B, 188, 488–495.CrossRef
    18.Aitchison, T. J., Ginic-Markovic, M., Matisons, J. G., Simon, G. P., & Fredericks, P. M. (2007). Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. Journal of Physical Chemistry C, 111, 2440–2446.CrossRef
    19.Yu, B.-Z., Yang, J.-S., & Li, W.-X. (2007). In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon, 45, 1921–1927.CrossRef
    20.Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
    21.Fedosov, S. N., Brask, J., & Xu, X. (2012). Microtitration of free fatty acids in oil and biodiesel samples using absorbance and/or fluorescence of pyranine. Journal of American Oil Chemistry Society, 89, 2155–2163.CrossRef
    22.Shantha, N. C. (1992). Thin-layer chromatography-flame ionization detection Iatroscan system. Journal of Chromatography A, 624, 21–35.CrossRef
    23.Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of American Oil Chemistry Society, 61, 1638–1643.CrossRef
    24.Fedosov, S. N., Brask, J., & Xu, X. (2011). Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves. Journal of Chromatography A, 1218, 2785–2792.CrossRef
    25.Ruelle, B., Peeterbroeck, S., Godfroid, T., Bittencourt, C., Hecq, M., Snyders, M., & Dubois, P. (2012). Selective grafting of primary amines onto carbon nanotubes via free-radical treatment in microwave plasma post-discharge. Polymers., 4, 296–315.CrossRef
    26.Vesali Naseh, M., Khodadadi, A. A., Mortazavi, Y., Alizadeh Sahraei, O., Pourfayaz, F., & Mosadegh Sadeghi, S. (2009). Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma. International Journal of Chemical and Biological Engineering., 2, 66–68.
    27.Rodrigues, D. S., Cavalcante, G. P., Ferreira, A. L. O., & Gonçalves, L. R. B. (2008). Immobilization of Candida antarctica lipase type B by adsorption on activated carbon. Chemical and Biochemical Engineering Quarterly, 22(1), 125–133.
    28.Zubay, G. L. (1983). Biochemistry. Boston, US: Addison-Wesly Educational Publishers Inc.
    29.Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648–653.CrossRef
    30.Hansen, C. (1999). Hansen solubility parameters: a user’s handbook. Boca Raton Florida, US: CRC Press, Inc.CrossRef
    31.Azocar, L., Navia, R., Beroiz, L., Jeison, D., & Ciudad, G. (2014). Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnology, 31, 422–429.CrossRef
    32.Yucel, Y., Demir, C., Dizge, N., & Keskinler, B. (2014). Methods for lipase immobilization and their use for biodiesel production from vegetable oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36, 1203–2011.CrossRef
    33.Winayanuwattikun, P., Kaewpiboon, C., Piriyakananon, K., Chulalaksananukul, W., Yongvanich, T., & Svasti, J. (2011). Immobilized lipase from potential lipolytic microbes for catalyzing biodiesel production using palm oil as feedstock. African Journal of Biotechnology, 10, 1666–1673.
    34.Valivetry, R. H., Halling, P. J., & Macrae, A. R. (1992). Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochimica et Biophysica Acta, 1118, 218–222.CrossRef
    35.Valivety, R. H., Halling, P. J., & Macrae, A. R. (1992). Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochimica et Biophysica Acta, 1122, 143–146.CrossRef
    36.Wehtje, E., & Adlercreutz, P. (1997). Lipases have similar water activity profiles in different reactions. Biotechnology Letters, 19, 537–540.CrossRef
    37.Ma, L., Persson, M., & Adlercreutz, P. (2002). Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme and Microbial Technology, 31, 1024–1029.CrossRef
    38.Valivety, R. H., Halling, P. J., & Macrae, A. R. (1992). Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Letters, 301, 258–260.CrossRef
    39.Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17, 133–142.CrossRef
    40.Su, E.-Z., Zhang, M.-J., Zhang, J.-G., Gao, J.-F., & Wei, D.-Z. (2007). Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor. Biochemical Engineering Journal, 36, 167–173.CrossRef
    41.Chen, Y. Z., Ching, C. B., & Xu, R. (2009). Lipase immobilization on modified zirconia nanoparticles: studies on the effects of modifiers. Process Biochemistry, 44, 1245–1251.CrossRef
    42.Li, L., Du, W., Liu, D., Wang, L., & Li, Z. (2006). Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 43, 58–62.CrossRef
    43.Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., & Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Conversion and Management, 50, 668–673.CrossRef
    44.Devi, P. B. L. A., Guo, Z., & Xu, X. (2011). Characterization of ionic liquid-based biocatalytic two-phase reaction system for production of biodiesel. AICHE Journal, 57, 1628–1637.CrossRef
    45.Ozmen, E. Y., & Yilmaz, M. (2009). Pretreatment of Candida rugosa lipase with soybean oil before immobilization on β-cyclodextrin-based polymer. Colloids and Surfaces B: Biointerfaces, 69, 58–62.CrossRef
    46.Martinelle, M., Holmquist, M., & Hult, K. (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginose lipase. Biochimica et Biophysica Acta, Lipids and Lipid Metabolism, 1258, 272–276.CrossRef
    47.Lee, D.-G., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C.-H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 57, 62–66.CrossRef
    48.Hsu, A. F., Jones, K., Marmer, W. N., & Foglia, T. A. (2001). Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol–gel. Journal of American Oil Chemistry Society, 78, 585–588.CrossRef
    49.Lu, J., Nie, K., Xie, F., Wang, F., & Tan, T. (2007). Enzymatic synthesis of fatty acid methyl esters from Lard with immobilized Candida sp. 99–125. Process Biochemistry, 42, 1367–1370.CrossRef
  • 作者单位:Zahra Rastian (1) (2)
    Abbas Ali Khodadadi (1)
    Zheng Guo (2)
    Farzaneh Vahabzadeh (3)
    Yadollah Mortazavi (1)

    1. Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
    2. Department of Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
    3. Food Engineering and Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Surface modification of multiwalled carbon nanotubes (MWCNTs) through functionalization could improve the characteristics of these nanomaterials as support for enzymes. Carboxylation of MWCNTs (MWCNT-COOH) has been carried out in this study using the dielectric barrier discharge (DBD) plasma reactor through humidified air. The chemical method was also used for further functionalization of the MWCNT-COOH through which the amidation of the surfaces with either butylamine (MWCNT-BA) or octadecylamine (MWCNT-OA) was performed. By immobilization of Candida antarctica B lipase (CALB) on these nanoparticles, performance of the immobilized enzyme in catalyzing methanolysis of rapeseed oil was evaluated. The CALB loading on the MWCNT-BA and MWCNT-COOH was 20 mg protein/g, while the value for MWCNT-OA was 11 mg protein/g. The yield of biodiesel was determined as percentage of mass of fatty acid methyl ester (FAME) produced per initial mass of the oil, and the yield value for the two of these three supports namely, MWCNT-COOH and MWCNT-BA used for the CALB immobilization was similar at about 92 %, while 86 % was the yield for the reaction catalyzed by the lipase immobilized on MWCNT-OA. Thermal stability of the immobilized CALB and the catalytic ability of the enzyme in the repeated batch experiments have also been determined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700