Detonation diffraction in combustible high-speed flows
详细信息    查看全文
  • 作者:Mingyue Gui ; Baochun Fan ; Baoming Li
  • 关键词:Detonation diffraction ; High ; speed flows ; Re ; initiation ; WENO scheme
  • 刊名:Shock Waves
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:26
  • 期:2
  • 页码:169-180
  • 全文大小:3,069 KB
  • 参考文献:1.Kailasanath, K.: Review of propulsion application of detonation waves. AIAA J. 38(9), 1698–1708 (2000)CrossRef
    2.McKenna, W.W.: Interaction between detonation waves and flowfields. AIAA J. 5(5), 868–873 (1967)CrossRef
    3.Vasil’ev, A.A., Zvegintsev, V.I., Nalivaichenko, D.G.: Detonation waves in reactive supersonic flow. Combust. Explos. Shock Waves 42, 568–581 (2006)CrossRef
    4.Yi, T.H., Wilson, D.R., Lu, F.K.: Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber. In: Proceedings of the 25th International Symposium on Shock Waves, paper no. 10041 (2004)
    5.Ishii, K., Kataoka, H., Kojima, T.: Initiation and propagation of detonation waves in combustible high speed flows. Proc. Combust. Inst. 32, 2323–2330 (2009)CrossRef
    6.Zeldovich, IaB, Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation in gases. Sov. Phys. Tech. Phys. 1(8), 1689–1713 (1956)
    7.Soloukhin, R.I., Ragland, K.W.: Ignition processes in expanding detonations. Combust. Flame 13, 295–302 (1969)CrossRef
    8.Edwards, D.H., Thomas, G.O., Nettleton, M.A.: The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95, 79–96 (1979)CrossRef
    9.Edwards, D.H., Thomas, G.O., Nettleton, M.A.: Diffraction of a planar detonation in various fuel–oxygen mixtures at an area change. Prog. Astronaut. Aeronaut. 76, 341–357 (1981)
    10.Moen, I.O., Donato, M., Knystautas, R., Lee, J.H.: The influence of confinement on the propagation of detonations near the detonability limits. Proc. Combust. Inst. 18, 1615–1622 (1981)CrossRef
    11.Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982)CrossRef
    12.Murray, S.B., Lee, J.H.: On the transformation of planar detonation to cylindrical detonation. Combust. Flame 52, 269–289 (1983)CrossRef
    13.Pintgen, F., Shepherd, J.E.: Detonation diffraction in gases. Combust. Flame 156, 665–677 (2009)CrossRef
    14.Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNet CrossRef MATH
    15.Zhong, X.L.: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)MathSciNet CrossRef MATH
    16.Oran, E.S., Young, T.R., Boris, J.P., Cohen, A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–148 (1982)CrossRef
    17.Pan, Z.H., Fan, B.C., Zhang, X.D., Gui, M.Y., Dong, G.: Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame 158, 2220–2228 (2011)CrossRef
    18.Zhang, X.D., Fan, B.C., Pan, Z.H., Gui, M.Y.: Experimental and numerical study on detonation propagation in an annular cylinder. Combust. Sci. Technol. 184, 1708–1717 (2012)CrossRef
    19.Mazaheri, K., Mahmoudi, Y., Radulescu, M.I.: Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159, 2138–2154 (2012)
    20.Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29, 297–304 (1967)CrossRef
    21.Gui, M.Y., Fan, B.C.: Wavelet structure of wedge-induced oblique detonation waves. Combust. Sci. Technol. 184, 1456–1470 (2012)CrossRef
    22.Smolinska, A., Khasainov, B., Virot, F., Desbordes, D., Presles, H.N., Vasil’ev, A.A., Trotsyuk, A.V., Fomin, P.A., Vasiliev, V.A.: Detonation diffraction from tube to space via frontal obstacle. In: Proceedings of the European Combustion Meeting, Vienna, HAL-00422468 (2009)
  • 作者单位:Mingyue Gui (1) (2)
    Baochun Fan (1)
    Baoming Li (1)

    1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, No. 200, Xiaolingwei, Nanjing, 210094, Jiangsu, China
    2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Fluids
    Thermodynamics
    Acoustics
    Condensed Matter
    Solid State Physics and Spectroscopy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2153
文摘
Detonation propagating in a T-shaped tube with quiescent and moving hydrogen/oxygen/argon mixtures is numerically examined based on the Euler equations with detailed finite-rate chemistry using the fifth-order weighted essentially non-oscillatory scheme. When diffracted in a quiescent combustible mixture, the detonation wave propagating from the bottom of the T-shaped tube is influenced by the corner rarefaction waves and decays into a non-reacting shock. Subsequently, the decoupled shock reflects irregularly from the top wall. Through several reflections back and forth between the top and bottom walls, a planar detonation is finally re-established. When the combustible mixture in the horizontal part flows from the left to the right, the detonation products ejected from the vertical tube will retard the flow, generating a compression flow upstream and a rarefaction flow downstream. The disturbed detonation on the left side is stronger than that on the right side. The final planar detonation in the upstream direction propagates faster than the Chapman–Jouguet (CJ) detonation with compressed, fine cellular structures, whereas the detonation in the downstream direction propagates more slowly than the CJ detonation with elongated, coarse cellular structures. The details of the transient behavior of diffracting detonation in high-speed flows are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700