On-demand, parallel droplet merging method with non-contact droplet pairing in droplet-based microfluidics
详细信息    查看全文
  • 作者:Sanghyun Lee ; Hojin Kim ; Dong-Joon Won ; Jaehyung Lee…
  • 关键词:Droplet ; based microfluidics ; Deformability ; On ; demand droplet merging ; Laplace trap ; Non ; contact pairing
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 全文大小:2,121 KB
  • 参考文献:Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366CrossRef
    Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12:422–433CrossRef
    Baroud et al (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045CrossRef
    Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501CrossRef
    Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106:14195–14200CrossRef
    Cho S et al (2013) Droplet-based microfluidic platform for high-throughput, multi-parameter screening of photosensitizer activity. Anal Chem 85:8866–8872CrossRef
    Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21:4071–4086CrossRef
    Dura B, Liu Y, Voldman J (2014) Deformability-based microfluidic cell pairing and fusion. Lab Chip 14:2783–2790CrossRef
    Fradet E, Mcdougall C, Abbyad P, Dangla R, Mcgloin D, Baroud CN (2011) Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. Lab Chip 11:4228–4234CrossRef
    Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7:1479–1489CrossRef
    Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155CrossRef
    Han Z, Li W, Huang Y, Zheng B (2009) Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal Chem 81:5840–5845CrossRef
    Joensson HN, Andersson Svahn H (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51:12176–12192CrossRef
    King PH, Jones G, Morgan H, de Planque MRR, Zauner K-P (2014) Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 14:722–729CrossRef
    Lee B, Yoo JY (2011) Droplet bistability and its application to droplet control. Microfluid Nanofluidics 11:685–693CrossRef
    Leshansky A, Pismen L (2009) Breakup of drops in a microfluidic T junction. Physics of Fluids 21:023303 (1994-present) CrossRef MATH
    Link D, Anna SL, Weitz D, Stone H (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503CrossRef
    Mazutis L, Griffiths AD (2009) Preparation of monodisperse emulsions by hydrodynamic size fractionation. Appl Phys Lett 95:204103CrossRef
    Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891CrossRef
    Niu X, Gulati S, Edel JB (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841CrossRef
    Priest C, Herminghaus S, Seemann R (2006) Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl Phys Lett 89:134101CrossRef
    Schaerli Y, Hollfelder F (2009) The potential of microfluidic water-in-oil droplets in experimental biology. Mol BioSyst 5:1392–1404CrossRef
    Sesen M, Alan T, Neild A (2014) Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip
    Simon MG, Lin R, Fisher JS, Lee AP (2012) A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. Biomicrofluidics 6:014110CrossRef
    Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83:4664–4666CrossRef
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356CrossRef
    Srisa-Art M, Dyson EC, deMello AJ, Edel JB (2008) Monitoring of real-time streptavidin—biotin binding kinetics using droplet microfluidics. Anal Chem 80:7063–7067CrossRef
    Tan Y-C, Ho YL, Lee AP (2007) Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluidics 3:495–499CrossRef
    Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163CrossRef
    Tullis J, Park CL, Abbyad P (2014) Selective fusion of anchored droplets via changes in surfactant concentration. Lab Chip 14:3285–3289CrossRef
    Tung K-Y, Li C-C, Yang J-T (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluidics 7:545–557CrossRef
    Um E, Rha E, Choi S-L, Lee S-G, Park J-K (2012) Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets. Lab Chip 12:1594–1597CrossRef
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef
  • 作者单位:Sanghyun Lee (1)
    Hojin Kim (1)
    Dong-Joon Won (1)
    Jaehyung Lee (2)
    Joonwon Kim (1)

    1. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, Republic of Korea
    2. Stratio, Inc., 998 Hamilton Ave., Menlo Park, CA, 94025, USA
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We demonstrate a simple approach for merging droplets in an on-demand, parallel manner via non-contact pairing of two droplets. The non-contact pairing can be achieved by exploiting flow-induced deformability of a droplet with a unique structure of merging element. Non-contact paired droplets, which are initially stabilized by surfactant molecules, can be merged simply by destabilizing the droplet interface and bringing two droplets into contact. On-demand, parallel droplet merging is performed with a proper pressure profile achieved by a pneumatic pressure supply system, and merging process is solely dependent on the pressure-driven fluid flow. We achieved an average merging efficiency of 90.0 % (SD = 3.14, n = 450) in performing parallel merging in a non-contact paired droplet array. We also evaluated the on-demand merging performance by measuring the average merging delay time (mean = 3.25 s, SD ± 1.09 s, n ~ 180). Furthermore, we demonstrated the applicability of our device for the initiation of a chemical reaction through the merging of two droplets with different chemical contents. We believe that the proposed method will be useful for studying various droplet-based reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700