Assimilating QuikSCAT Ocean Surface Winds with the Weather Research and Forecasting Model for Surface Wind-Field Simulation over the Chukchi/Beaufort Seas
详细信息    查看全文
  • 作者:Xingang Fan (1)
    Jeremy R. Krieger (2)
    Jing Zhang (3)
    Xiangdong Zhang (4)
  • 关键词:Data assimilation ; Numerical weather prediction ; QuikSCAT ocean surface winds ; Three ; dimensional variational data assimilation ; Weather Research and Forecasting model
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:148
  • 期:1
  • 页码:207-226
  • 全文大小:1705KB
  • 参考文献:1. Barker DM, Huang W, Guo YR, Xiao QN (2004) A three-dimensional (3DVAR) data assimilation system for use with MM5: implementation and initial results. Mon Weather Rev 132:897-14 CrossRef
    2. Bengtsson L, Ghil M, Kallen E (1981) Dynamic meteorology: data assimilation methods. Springer, New York, 330 pp
    3. Chen SH (2007) The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulations. Mon Weather Rev 135:549-66. doi:10.1175/MWR3283.1 CrossRef
    4. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modelling system. Part I: Model description and implementation. Mon Weather Rev 129:569-85 CrossRef
    5. Chen SH, Vandenberghe F, Petty GW, Bresch JF (2004) Application of SSM/I satellite data to a hurricane simulation. Q J R Meteorol Soc 130:801-25 CrossRef
    6. Daley R (1991) Atmospheric data analysis. Cambridge University Press, New York, 457 pp
    7. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077-107 CrossRef
    8. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103-20 CrossRef
    9. Ide K, Courtier P, Ghil M, Lorenc A (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn Special Issue 75(1B):181-89
    10. Isaksen L, Janssen PAEM (2004) Impact of ERS scatterometer winds in ECMWF’s assimilation system. Q J R Meteorol Soc 130:1793-814 CrossRef
    11. Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429-443 CrossRef
    12. Janjic ZI (1996) The surface layer in the NCEP eta model. In: Eleventh conference on numerical weather prediction, Norfolk, VA, 19-3 August, American Meteorological Society, Boston, pp 354-55
    13. Janjic ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note, No. 437, 61 pp
    14. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784-802 CrossRef
    15. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritcsh scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, 246 pp
    16. Kalnay E (2003) Atmospheric modelling, data assimilation and predictability. Cambridge University Press, New York, 341 pp
    17. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247-67. doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
    18. Kozo T (1980) Mountain barrier baroclinity effects on surface winds along the Alaskan coast. Geophys Res Lett 7:377-80 CrossRef
    19. Kozo T (1982) An observational study of sea breezes along the Alaskan Beaufort Sea coast: part I. J Appl Meteorol 21(7):891-05 CrossRef
    20. Leidner SM, Isaksen L, Hoffman RN (2003) Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation system. Mon Weather Rev 131:3-6 CrossRef
    21. Long DG, Mendel JM (1990) Model-based estimation of wind fields over the ocean from wind scatterometer measurements. I. Development of the wind field model. IEEE Trans Geosci Remote Sens 28(3):349-60 CrossRef
    22. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovi? D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343-60. doi:10.1175/BAMS-87-3-343 CrossRef
    23. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave. J Geophys Res 102(D14):16663-6682 CrossRef
    24. Parrish DF, Derber J (1992) The National Meteorological Center’s spectral statistical interpolation analysis system. Mon Weather Rev 120:1747-763 CrossRef
    25. Pichel W, Monaldo F, Nicoll J (2005) SAR-derived coastal winds. Alaska Satellite Facility News and Notes, winter 2:4
    26. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version2. NCAR Technical Note, NCAR/TN-468+STR, 88 pp
    27. Stegall ST, Zhang J (2012) Wind field climatology, changes, and extremes in the Chukchi–Beaufort Seas and Alaska North Slope during 1979-009. J Clim 25:8075-089. doi:10.1175/JCLI-D-11-00532.1
    28. Talagrand O (1997) Assimilation of observations, an introduction. J Meteorol Soc Jpn Special Issue 75(1B):191-09
    29. Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the winter time geopotential height and temperature fields. Geophys Res Lett 25:1297-300 CrossRef
    30. Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. J Clim 9:480-88 CrossRef
    31. Zhang X, Walsh JE, Zhang J, Bhatt US, Ikeda M (2004) Climatology and interannual variability of Arctic cyclone activity: 1948-002. J Clim 17:2300-317 CrossRef
  • 作者单位:Xingang Fan (1)
    Jeremy R. Krieger (2)
    Jing Zhang (3)
    Xiangdong Zhang (4)

    1. Meteorology Program, Department of Geography and Geology, Western Kentucky University, 1906 College Heights Blvd., #31066, Bowling Green, KY, 42101-1066, USA
    2. Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, AK, USA
    3. Departments of Physics and Energy and Environmental Systems, North Carolina A&T State University, Greensboro, NC, USA
    4. International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
  • ISSN:1573-1472
文摘
To achieve a high-quality simulation of the surface wind field in the Chukchi/Beaufort Sea region, quick scatterometer (QuikSCAT) ocean surface winds were assimilated into the mesoscale Weather Research and Forecasting model by using its three-dimensional variational data assimilation system. The SeaWinds instrument on board the polar-orbiting QuikSCAT satellite is a specialized radar that measures ice-free ocean surface wind speed and direction at a horizontal resolution of 12.5 km. A total of eight assimilation case studies over two five-day periods, 1- October 2002 and 20-4 September 2004, were performed. The simulation results with and without the assimilation of QuikSCAT winds were then compared with QuikSCAT data available during the subsequent free-forecast period, coastal station observations, and North American Regional Reanalysis data. It was found that QuikSCAT winds are a potentially valuable resource for improving the simulation of ocean near-surface winds in the Chukchi/Beaufort Seas region. Specifically, the assimilation of QuikSCAT winds improved, (1) offshore surface winds as compared to unassimilated QuikSCAT winds, (2) sea-level pressure, planetary boundary-layer height, as well as surface heat fluxes, and (3) low-level wind fields and geopotential height. Verification against QuikSCAT data also demonstrated the temporal consistency and good quality of QuikSCAT observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700