Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: precipitation in Germany
详细信息    查看全文
  • 作者:Kirsten Warrach-Sagi ; Thomas Schwitalla ; Volker Wulfmeyer…
  • 关键词:Regional climate model ; Germany ; Precipitation ; Convection ; permitting simulation
  • 刊名:Climate Dynamics
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:41
  • 期:3-4
  • 页码:755-774
  • 全文大小:2780KB
  • 参考文献:1. Acs F, Horvath A, Breuer H, Rubel F (2010) Effect of soil hydraulic parameters on the local convective precipitation. Meteorol Z 19:143-53 CrossRef
    2. Collins WD et al (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note, NCAR/TN-464+STR, p 226
    3. Bauer H-S, Weusthoff T, Dorninger M, Wulfmeyer V, Schwitalla T, Gorgas T, Arpagaus M, Warrach-Sagi K (2011) Predictive skill of a subset of the D-PHASE multi-model ensemble in the COPS region. Q J R Meteorol Soc 137:287-05. doi:10.1002/qj.715 CrossRef
    4. Beniston M et al (2007) Future extreme events in European climate; an exploration of regional climate model projections. Clim Change 81:71-5 CrossRef
    5. Berg P, Panitz H-J, Sch?dler G, Feldmann H, Kottmeier Ch (2011) Modelling Regional Climate Change in Germany. In: Nagel WE et al (eds). High performance computing in science and engineering -0. doi:10.1007/978-3-642-15748-6_34
    6. Brockhaus P, Lüthi D, Sch?r C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17:433-43 CrossRef
    7. Chen F, Dudhia J (2001a) Coupling an advanced landsurface/hydrology model with the penn state NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569-85 CrossRef
    8. Chen F, Dudhia J (2001b) Coupling an advanced landsurface/hydrology model with the penn state NCAR MM5 modeling system. Part II: preliminary model validation. Mon Weather Rev 129:587-04 CrossRef
    9. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7-0 CrossRef
    10. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1- CrossRef
    11. Davin EL, Stoeckli R, Jaeger EB, Levis S, Seneviratne SI (2011) COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model. Clim Dyn 37:1889-907. doi:10.1007/s00382-011-1019-z
    12. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553-97 CrossRef
    13. Déqué M et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53-0 CrossRef
    14. Dobler A, Ahrens B (2008) Precipitation by a regional climate model and bias correction in Europe and South Asia. Meteorol Z 17:499-09 CrossRef
    15. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions—should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci Discuss 9:5355-387 CrossRef
    16. Feldmann H, Früh B, Sch?dler G, Panitz H-J, Keuler K, Jacob D, Lorenz P (2008) Evaluation of the precipitation for South-western Germany from high resolution simulations with regional climate models. Meteorol Z 17:455-65 CrossRef
    17. Frei C, Christensen JH, Deque M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi:10.1029/2002JD002287
    18. Früh B, Feldmann H, Panitz H-J, Sch?dler G, Jacob D, Lorenz P, Keuler K (2010) Determination of precipitation return values in complex terrain and their evaluation. J Clim 23:2257-274. doi:10.1175/2009JCLI2685.1 CrossRef
    19. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175-83
    20. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res (Atmospheres) 113:D20119. doi:10.1029/2008JD10201 CrossRef
    21. Heikkil? U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37:1551-564. doi:10.1007/s00382-010-0928-6 CrossRef
    22. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318-341 CrossRef
    23. Ingwersen J et al (2011) Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151:345-55. doi:10.1016/j.agrformet.2010.11.010 CrossRef
    24. Jacob D et al (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81:31-2 CrossRef
    25. Jaeger EB, Anders I, Lüthi D, Rockel B, Sch?r C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17:349-67 CrossRef
    26. Joseph S, Sahai AK, Goswami BN (2010) Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Clim Dyn 35:651-67 CrossRef
    27. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170-81 CrossRef
    28. Kotlarski S, Block A, B?hm U, Jacob D, Keuler K, Knoche R, Rechid D, Walter A (2005) Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. Adv Geosci 5:119-25 CrossRef
    29. Maraun D (2011) How robust is bias correction under climate change? Assessing the direct approach for temperature and precipitation in a pseudo reality? Geophys Res Abstr 13:EGU2011-7632, EGU General Assembly 2011
    30. Maraun D (2012) Nonstationarites of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys Res Lett 39:L06706 CrossRef
    31. Meehl GA, Tebaldi C (2004) More intense, more frequent and longer lasting heat waves in the 21st Century. Science 305:994-97 CrossRef
    32. Meissner C, Sch?dler G, Panitz H-J, Feldmann H, Kottmeier C (2009) High-resolution sensitivity studies with the regional climate model COSMO-CLM. Meteorol Z 18:543-57 CrossRef
    33. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991-007 CrossRef
    34. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187-92 CrossRef
    35. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effect of regional climate model simulation of precipitation over Europe. Part I Seas Clim Dyn 35:685-11 CrossRef
    36. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes 194:93
    37. Rotach MW et al (2009) MAP D-PHASE: real-time demonstration of weather forecast quality in the Alpine region. Bull Am Meteorol Soc 90:1321-336 CrossRef
    38. Sch?r C, Vidale PL, Lüthi D, Frei C, H?berli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability for European summer heat waves. Nature 427:332-36 CrossRef
    39. Schwitalla T, Z?ngl G, Bauer H-S, Wulfmeyer V (2008) Systematic errors of QPF in low-mountain regions. Special issue on quantitative precipitation forecasting. Meteorol Z 17:903-19. doi:10.1127/0941-2948/2008/0338 CrossRef
    40. Schwitalla T, Bauer H-S, Wulfmeyer V, Aoshima F (2011) High-resolution simulation over Central Europe: assimilation experiments with WRF 3DVAR during COPS IOP9c. Q J Roy Meteorol Soc 137:156-75. doi:10.1002/qj.721 CrossRef
    41. Simmons AJ, Uppala SM, Dee DP, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25-5
    42. Skamarock WC, Klemp JB, Dudhia J, Gill D, Barker DO, Duda MG, Wang W, Powers JG (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note TN-475+STR. Boulder, CO, NCAR, p 125
    43. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183-192 CrossRef
    44. Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geogr Compass 4:834-60 CrossRef
    45. Uppala SM, Dee DP, Kobayashi S, Berrisford P, Simmons AJ (2008) Towards a climate data assimilation system: status update of ERA interim. ECMWF Newsl 115:12-8
    46. Warrach-Sagi K, Wulfmeyer V, Grasselt R, Ament F, Simmer C (2008) Streamflow simulations reveal the impact of the soil parameterization. Meteorol Z 17:751-62. doi:10.1127/0941-2948/2008/0343 CrossRef
    47. Wu W, Dickinson RE (2004) Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J Clim 17:2752-764 CrossRef
    48. Wulfmeyer V e t al (2008) The convective and orographically-induced precipitation study: a research and development project of the world weather research program for improving quantitative precipitation forecasting in low-mountain regions. Bull Amer Meteor Soc 89:1477-486. doi:10.1175/2008BAMS2367.1 CrossRef
    49. Wulfmeyer V et al (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and first highlights. Q J R Meteorol Soc 137:3-0. doi:10.1002/qj.752 CrossRef
  • 作者单位:Kirsten Warrach-Sagi (1)
    Thomas Schwitalla (1)
    Volker Wulfmeyer (1)
    Hans-Stefan Bauer (1)

    1. Institute of Physics and Meteorology, University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
  • ISSN:1432-0894
文摘
The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700