Spectroscopic and computational characterization of laccases and their substrate radical intermediates
详细信息    查看全文
  • 作者:Rebecca Pogni (1)
    Maria Camilla Baratto (1)
    Adalgisa Sinicropi (1)
    Riccardo Basosi (1)
  • 关键词:Multicopper oxidases ; Copper catalytic site ; Laccase鈥檚 catalytic mechanism ; Substrate oxidation ; Paramagnetic species ; Radical intermediates ; EPR spectroscopy ; DFT calculations
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:72
  • 期:5
  • 页码:885-896
  • 全文大小:1,614 KB
  • 参考文献:1. Yoshida H (1883) Chemistry of lacquer (urushi). Part I. J Chem Soc 43:472鈥?86 CrossRef
    2. Mayer AM, Staples RC (2002) Laccase: new Functions for an old enzyme. Phytochemistry 60:551鈥?65 CrossRef
    3. Shumacovich G, Streltsov A, Gorshina E, Rusinova T, Kurova V, Vasil鈥檈va I, Otrokhov G, Morozova O, Yaropolov A (2009) Laccase-catalyzed oxidative polymerization of aniline dimer (N-phenyl-1,4-phenylendiamine) in aqueous micellar solution of sodium dodecylbenzenesulfonate. J Mol Cat B Enzym 69:83鈥?8 CrossRef
    4. Yaropolov AI, Skorobogat鈥檏o OV, Vartanov SS, Varfolomeev SD (1994) Laccase: properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 49:257鈥?80 CrossRef
    5. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608鈥?614 CrossRef
    6. Messerschmidt A (ed) (1997) Multi-copper oxidases. World Scientific Singapore, Singapore
    7. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1鈥?6 CrossRef
    8. Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265鈥?22 CrossRef
    9. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deusse HJW, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-Hydroxy compounds. Appl Environ Microbiol 66:2052鈥?056 CrossRef
    10. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochim Biophys Acta 1292:303鈥?11 CrossRef
    11. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605鈥?24 CrossRef
    12. Baldrian P (2006) Fungal laccases鈥攐ccurrence and properties. FEMS Microbial rev 30:215鈥?24 CrossRef
    13. Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G (2011) Fungal laccases: versatile tools for lignocellulose transformation. C R Biol 334:789鈥?94 CrossRef
    14. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS 267:99鈥?02 CrossRef
    15. Polak J, Jarosz-Wilkolazka A (2012) Fungal Laccases as green catalysts for dye synthesis. Process Biochem 47:1295鈥?307 CrossRef
    16. Forte S, Polak J, Valensin D, Taddei M, Basosi R, Vanhulle S, Jarosz-Wilkolazka A, Pogni R (2010) Synthesis and structural characterization of a novel phenoxazinone dye by use of a fungal laccase. J Mol Catal B Enzym 63:116鈥?20 CrossRef
    17. Bruyneel F, Basosi R, Bols CM, Enaud E, Hercher C, Jager IJ, Marchand-Brynaert J, Pogni R, Polak J, Jarosz A, Wilkolaska A, Vanhulle S, Phenoxazine dyes. US Patent 61/078670 (2008) and 12/498,666 (2009) and PCT PCT/EP2009/058640 (2009)
    18. Monti D, Ottolina G, Carrea G, Riva S (2011) Redox Chemistry catalyzed by isolated enzymes. Chem Rev 111:4111鈥?140 CrossRef
    19. Wong DMS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174鈥?09 CrossRef
    20. Kosman DJJ (2010) Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15:15鈥?8 CrossRef
    21. Reinhammar B (1984) In: Lontie R (ed) Copper proteins and copper enzymes. CRC Press, Boca Raton, p 1
    22. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563鈥?606 CrossRef
    23. Solomon EI, Baldwin MJ, Lowery MD (1992) Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 92:521鈥?42 CrossRef
    24. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus / Trametes versicolor at 1.90-脜 resolution containing a full complement of coppers. J Biol Chem 277:37663鈥?7669 CrossRef
    25. Cambria MT, Gullotto D, Garavaglia S, Cambria A (2012) In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. J Biomol Struct Dyn 30:89鈥?01 CrossRef
    26. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA 104:13609鈥?3614 CrossRef
    27. Ryde U, Hsiao Y-W, Rul铆拧ek L, Solomon EI (2007) Identification of the peroxy adduct in multicopper oxidases by a combination of computational chemistry and extended x-ray absorption fine-structure measurements. J Am Chem Soc 129:726鈥?27 CrossRef
    28. Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G (2014) Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Appl Microbiol Biotechnol 98:4949鈥?961 CrossRef
    29. V盲nng氓rd T (1972) In: Bolton JR, Swartz HM, Borg DC (eds) Biological applications of electron spin resonance. Wiley, New York, p 411
    30. Hyde JS, Froncisz W (1982) Ann Rev Biophys Bioeng 11:391 CrossRef
    31. Basosi R, Antholine WE, Hyde JS (2004) Multifrequency ESR of copper: biophysical applications. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum Press, New York, pp 103鈥?50
    32. Pogni R, Brogioni B, Baratto MC, Sinicropi A, Giardina P, Pezzella C, Sannia G, Basosi R (2007) Evidence for a radical mechanism in biocatalytic degradation of synthetic dyes by fungal laccases mediated by violuric acid. Biocatal Biotransform 25:269鈥?75 CrossRef
    33. Martorana A, Vazquez-Duhalt R, Auila SA, Basosi R, Baratto MC (2014) Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the / Coriolopsis gallica laccase-mediator system. J Mol Catal B Enzym 107:100鈥?05 CrossRef
    34. Froncisz W, Hyde JS (1980) Broadening by strains of lines in the g-parallel region of Cu2+ EPR spectra. J Chem Phys 73:3123鈥?131 CrossRef
    35. Basosi R, Della Lunga G, Pogni R (2004) Copper biomolecules in solution. In: Eaton SS, Eaton GR, Berliner LJ (eds)聽Biomedical EPR-part A: free radicals, metals, medicine and physiology. Kluwer Academic/Plenum Publishers, New York, pp 385鈥?16
    36. Antholine WE (2004) Low frequency EPR of Cu2+. In: Eaton SS, Eaton GR, Berliner LJ (eds)聽Biomedical EPR-part A: free radicals, metals, medicine and physiology. Kluwer Academic/Plenum Publishers, New York, pp 417鈥?54
    37. De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Cryst D68:564鈥?77
    38. Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO (2010) The multicopper oxidase from the archaeon / Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 277:3176鈥?189 CrossRef
    39. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191鈥?97 CrossRef
    40. Fabbrini M, Galli C, Gentili P (2002) Radical or electron-transfer mechanism of oxidation with some laccase/mediator systems. J Mol Cat B Enzym 18:169鈥?71 CrossRef
    41. Camarero S, Canas AI, Nousiainen P, Record E, Lomascolo A, Martinez MJ, Martinez AT (2008) / p-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703鈥?709 CrossRef
    42. Torres Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77:687鈥?92 CrossRef
    43. Majcherczyk A, Johannes C, H眉ttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbial Technol 22:335鈥?41 CrossRef
    44. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524鈥?28 CrossRef
    45. Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775鈥?784 CrossRef
    46. Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523鈥?35 CrossRef
    47. Brogioni B, Biglino D, Sinicropi A, Reijerse EJ, Giardina P, Sannia G, Lubitz W, Basosi R, Pogni R (2008) Characterization of radical intermediates in laccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation. Phys Chem Chem Phys 10:7284鈥?292 CrossRef
    48. Martorana A, Bernini C, Valensin D, Sinicropi A, Pogni R, Basosi R (2011) Baratto MC (2011) Insights into the homocoupling reaction of 4-methylamino benzoic acid mediated by Trametes versicolor laccase. Mol Biosyst 7:2967鈥?969 CrossRef
    49. Lopez J, Yamauchi J, Okada K, Deguchi Y (1984) ENDOR study of benzothiazolone azine cation radicals by means of a TM110 Mode Cavity. Bull Chem Soc Jpn 57:673鈥?77 CrossRef
    50. Scott SL, Chen WJ, Bakac A, Espenson JH (1993) Spectroscopic parameters electrode potentials, acid ionization constants, and electron exchange rates of the 2,2鈥?azinobis(3-ethylbenzothiazolone-6-sulfonate) radicals and ions. J Phys Chem 97:6710鈥?714
    51. Kim HC, Mickel M, Hampp N (2003) Molecular origin of the stability of violuric acid radicals at high pH-values. Chem Phys Lett 371:410鈥?16 CrossRef
    52. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123鈥?34 CrossRef
    53. Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and dioxygen binding to the endospore coat laccase from / Bacillus subtilis. J Biol Chem 279:23472鈥?3476 CrossRef
    54. D鈥橝cunzo F, Galli C, Masci B (2003) First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. Eur J Biochem 270:3634鈥?640 CrossRef
    55. Guti茅rrez A, Rencoret J, Ibarra D, Camarero S, Del Rio JC, Martinez AT (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41:4124鈥?129 CrossRef
    56. Ca帽as AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694鈥?05 CrossRef
    57. Khlifi-Slama R, Mechichi T, Sayadi S, Dhouib A (2012) Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters. J Microbiol 50:226鈥?34 CrossRef
    58. Torres-Duarte C, Aguila S, Vazquez-Duhalt R (2011) Syringaldehyde a true laccase mediator. Comments on the Letter to the Editor from Jeon, J-R., Kim, E-J. and Chang, Y-S. Chemosphere 85:1761鈥?762
    59. Pokhodenko VD, Khizhnyi VA, Bidzilya VA (1968) Stable Phenoxy-radicals. Russ Chem Rev 37:435鈥?48 CrossRef
    60. Martorana A, Sorace L, Boer H, Vazquez-Duhalt R, Basosi R, Baratto MC (2013) A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. J Mol Catal B 97:203鈥?08 CrossRef
    61. Medina F, Aguila SA, Baratto MC, Martorana A, Basosi R, Alderete JB, Vazquez-Duhalt R (2013) Prediction model based on decision tree analysis for laccase mediators. Enzym Microbial Technol 52:68鈥?6 CrossRef
    62. Marjasvaara A, Torvinen M, Kinnunen H, Vainiotalo P (2006) Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation experiments. Biomacromolecules 7:1604鈥?609 CrossRef
    63. Denisov ET, Khudyakov IV (1987) Mechanism of action and reactivities of the free radicals of inhibitors. Chem Rev 87:1313鈥?357 CrossRef
    64. Rochester CH, Rossall B (1967) Steric hindrance and acidity. Part I. The effect of 2,6-di-t-butyl substitution on the acidity of phenols in methanol. J Chem Soc B Phys Org 743鈥?48
  • 作者单位:Rebecca Pogni (1)
    Maria Camilla Baratto (1)
    Adalgisa Sinicropi (1)
    Riccardo Basosi (1)

    1. Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A Moro 2, 53100, Siena, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Laccases are multicopper oxidases which oxidize a wide variety of aromatic compounds with the concomitant reduction of oxygen to water as by-product. Due to their high stability and biochemical versatility, laccases are key enzymes to be used as eco-friendly biocatalyst in biotechnological applications. The presence of copper paramagnetic species in the catalytic site paired with the substrate radical species produced in the catalytic cycle makes laccases particularly attractive to be studied by spectroscopic approaches. In this review, the potentiality of a combined multifrequency electron paramagnetic spectroscopy /computational approach to gain information on the nature of the catalytic site and radical species is presented. The knowledge at molecular level of the enzyme oxidative process can be of great help to model new enzymes with increased efficiency and robustness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700