Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation
详细信息    查看全文
  • 作者:Zita Kátai (1)
    Csaba ádori (1)
    Tamás Kitka (1)
    Szilvia Vas (1)
    Lajos Kalmár (2)
    Diána Kostyalik (1)
    László Tóthfalusi (1)
    Miklós Palkovits (3)
    Gy?rgy Bagdy (1) (4) (5)
  • 关键词:EEG ; Sleep deprivation ; Rebound sleep ; Melanin ; concentrating hormone ; Escitalopram ; Depression ; Antidepressant ; Serotonin ; REM sleep ; Rat
  • 刊名:Psychopharmacology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:228
  • 期:3
  • 页码:439-449
  • 全文大小:467KB
  • 参考文献:1. Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6:341-51
    2. Antal-Zimanyi I, Khawaja X (2009) The role of melanin-concentrating hormone in energy homeostasis and mood disorders. J Mol Neurosci 39:86-8 CrossRef
    3. Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11-5 CrossRef
    4. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218-45 CrossRef
    5. Bodizs R (2009) In waves' parlance: serotonin and sleep oscillations. Neuropsychopharmacol Hung 11:191-99
    6. Bodizs R, Purebl G, Rihmer Z (2010) Mood, mood fluctuations and depression: role of the circadian rhythms. Neuropsychopharmacol Hung 12:277-87
    7. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8:825-30 CrossRef
    8. Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142:469-78 CrossRef
    9. Chung S, Parks GS, Lee C, Civelli O (2011) Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 43:115-21 CrossRef
    10. Dugovic C (2001) Role of serotonin in sleep mechanisms. Rev Neurol (Paris) 157:S16–S19
    11. El Mansari M, Sanchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30:1269-277
    12. Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89-2
    13. Gandolfo G, Gauthier P, Arnaud C, Gottesmann C (1996) Influence of paradoxical sleep deprivation on the intermediate stage of sleep in the rat. Neurosci Res 25:123-27
    14. Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM (2009) Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression. J Pharmacol Exp Ther 329:429-38 CrossRef
    15. Gerashchenko D, Shiromani PJ (2004) Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol Neurobiol 29:41-9 CrossRef
    16. Gillin JC (1983) The sleep therapies of depression. Prog Neuropsychopharmacol Biol Psychiatry 7:351-64 CrossRef
    17. Goder R, Seeck-Hirschner M, Stingele K, Huchzermeier C, Kropp C, Palaschewski M, Aldenhoff J, Koch J (2011) Sleep and cognition at baseline and the effects of REM sleep diminution after 1?week of antidepressive treatment in patients with depression. J Sleep Res 20:544-51 CrossRef
    18. Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45-8 CrossRef
    19. Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C (2007) Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol 505:147-57 CrossRef
    20. Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc Natl Acad Sci USA 106:2418-422 CrossRef
    21. Hemmeter UM, Hemmeter-Spernal J, Krieg JC (2010) Sleep deprivation in depression. Expert Rev Neurother 10:1101-115 CrossRef
    22. Kantor S, Jakus R, Balogh B, Benko A, Bagdy G (2004) Increased wakefulness, motor activity and decreased theta activity after blockade of the 5-HT2B receptor by the subtype-selective antagonist SB-215505. Br J Pharmacol 142:1332-342 CrossRef
    23. Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunoreactive neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 59:686-94 CrossRef
    24. Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G (2009) Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 205:482-87 CrossRef
    25. Kuhs H, Tolle R (1991) Sleep deprivation therapy. Biol Psychiatry 29:1129-148 CrossRef
    26. Lagos P, Torterolo P, Jantos H, Monti JM (2011a) Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 1369:112-18 CrossRef
    27. Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P (2011b) Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 218:259-66 CrossRef
    28. Landsness EC, Goldstein MR, Peterson MJ, Tononi G, Benca RM (2011) Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res 45:1019-026 CrossRef
    29. Leonard B, Taylor D (2010) Escitalopram—translating molecular properties into clinical benefit: reviewing the evidence in major depression. J Psychopharmacol 24:1143-152 CrossRef
    30. Maudhuit C, Jolas T, Chastanet M, Hamon M, Adrien J (1996) Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep. Biol Psychiatry 40:1000-007 CrossRef
    31. Millan MJ, Gobert A, Panayi F, Rivet JM, Dekeyne A, Brocco M, Ortuno JC, Di Cara B (2008) The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats. Int J Neuropsychopharmacol 11:1105-122 CrossRef
    32. Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807-816 CrossRef
    33. Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28:850-56
    34. Montgomery SA, Loft H, Sanchez C, Reines EH, Papp M (2001) Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 88:282-86 CrossRef
    35. Monti JM (2011) Serotonin control of sleep–wake behavior. Sleep Med Rev 15:269-81 CrossRef
    36. Murck H, Nickel T, Kunzel H, Antonijevic IA, Schill J, Zobel A, Steiger A, Sonntag A, Holsboer F (2003) State markers of depression in sleep EEG: dependency on drug and gender in patients treated with tianeptine or paroxetine. Neuropsychopharmacology 28:348-58 CrossRef
    37. Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S (2011) Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 61:336-46 CrossRef
    38. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, London
    39. Peyron C, Sapin E, Leger L, Luppi PH, Fort P (2009) Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 30:2052-059 CrossRef
    40. Pissios P (2009) Animals models of MCH function and what they can tell us about its role in energy balance. Peptides 30:2040-044 CrossRef
    41. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243-47 CrossRef
    42. Riemann D, Berger M, Voderholzer U (2001) Sleep and depression—results from psychobiological studies: an overview. Biol Psychol 57:67-03 CrossRef
    43. Selvi Y, Gulec M, Agargun MY, Besiroglu L (2007) Mood changes after sleep deprivation in morningness–eveningness chronotypes in healthy individuals. J Sleep Res 16:241-44 CrossRef
    44. Sogaard B, Mengel H, Rao N, Larsen F (2005) The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 45:1400-406 CrossRef
    45. Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44:242-52 CrossRef
    46. Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14 CrossRef
    47. Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6:55-9 CrossRef
    48. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635-52 CrossRef
    49. Vas S, Katai Z, Kostyalik D, Pap D, Molnar E, Petschner P, Kalmar L, Bagdy G (2013) Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment. J Neural Transm 120:169-76 CrossRef
    50. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19 CrossRef
    51. Vyazovskiy VV, Achermann P, Tobler I (2007) Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74:37-4 CrossRef
    52. Wade A, Michael Lemming O, Bang Hedegaard K (2002) Escitalopram 10?mg/day is effective and well tolerated in a placebo-controlled study in depression in primary care. Int Clin Psychopharmacol 17:95-02 CrossRef
    53. Wilson S, Argyropoulos S (2005) Antidepressants and sleep: a qualitative review of the literature. Drugs 65:927-47 CrossRef
    54. Winokur A, DeMartinis NA 3rd, McNally DP, Gary EM, Cormier JL, Gary KA (2003) Comparative effects of mirtazapine and fluoxetine on sleep physiology measures in patients with major depression and insomnia. J Clin Psychiatry 64:1224-229 CrossRef
    55. Winokur A, Gary KA, Rodner S, Rae-Red C, Fernando AT, Szuba MP (2001) Depression, sleep physiology, and antidepressant drugs. Depress Anxiety 14:19-8 CrossRef
    56. Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445-53 CrossRef
    57. Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 147:14-1
  • 作者单位:Zita Kátai (1)
    Csaba ádori (1)
    Tamás Kitka (1)
    Szilvia Vas (1)
    Lajos Kalmár (2)
    Diána Kostyalik (1)
    László Tóthfalusi (1)
    Miklós Palkovits (3)
    Gy?rgy Bagdy (1) (4) (5)

    1. Department of Pharmacodynamics, Semmelweis University, 1089 Nagyvárad tér 4., Budapest, Hungary
    2. Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Karolina út 29., Budapest, Hungary
    3. Neuromorphological Research Laboratory of the Semmelweis University and the Hungarian Academy of Sciences, 1094 T?zoltó utca 58., Budapest, Hungary
    4. Group of Neurochemistry, Hungarian Academy of Sciences, 1083, Budapest, Hungary
    5. Group of Neuropsychopharmacology, Hungarian Academy of Sciences, 1083, Budapest, Hungary
文摘
Rationale Selective rapid eye movement sleep (REMS) deprivation using the platform-on-water (“flower pot- method causes sleep rebound with increased REMS, decreased REMS latency, and activation of the melanin-concentrating hormone (MCH) expressing neurons in the hypothalamus. MCH is implicated in the pathomechanism of depression regarding its influence on mood, feeding behavior, and REMS. Objectives We investigated the effects of the most selective serotonin reuptake inhibitor escitalopram on sleep rebound following REMS deprivation and, in parallel, on the activation of MCH-containing neurons. Methods Escitalopram or vehicle (10?mg/kg, intraperitoneally) was administered to REMS-deprived (72?h) or home cage male Wistar rats. During the 3-h-long “rebound sleep- electroencephalography was recorded, followed by an MCH/Fos double immunohistochemistry. Results During REMS rebound, the time spent in REMS and the number of MCH/Fos double-labeled neurons in the lateral hypothalamus increased markedly, and REMS latency showed a significant decrease. All these effects of REMS deprivation were significantly attenuated by escitalopram treatment. Besides the REMS-suppressing effects, escitalopram caused an increase in amount of and decrease in latency of slow wave sleep during the rebound. Conclusions These results show that despite the high REMS pressure caused by REMS deprivation procedure, escitalopram has the ability to suppress REMS rebound, as well as to diminish the activation of MCH-containing neurons, in parallel. Escitalopram caused a shift from REMS to slow wave sleep during the rebound. Furthermore, these data point to the potential connection between the serotonergic system and MCH in sleep regulation, which can be relevant in depression and in other mood disorders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700